
1 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

MODELLING LANGUAGE
IMPLEMENTATION ON ADOxx

ADOxx® Training

2 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

What is ADOxx?

“ADOxx IS A META MODELLING
DEVELOPMENT AND

CONFIGURATION PLATFORM FOR
IMPLEMENTING MODELLING

TOOLS.”

3 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

ADOxx Developer

MM-Tool Developer

MM-tool User

Modelling Domain
Knowledge

Developing an Meta
Modelling Tool

Implementation of tool
specific and ADOxx

functionality

Domain Knowledge
Method Knowledge

Domain Knowledge
Method Knowledge
Platform Knowledge

Platform Knowledge
ADOxx Technology

Skills

Identified Roles Major Tasks Required Skills Cases

Es
ta

bl
ish

ed

m
od

ell
in

g
to

ol
s

Ag
ile

 d
ev

elo
pm

en
t o

f m
od

ell
in

g
to

ol
 in

pa

ra
lle

l t
o

m
od

ell
in

g
to

ol
 u

sa
ge

Ag
ile

 d
ev

elo
pm

en
t o

f A
DO

xx
 p

lat
fo

rm
 in

pa

ra
lle

l t
o

m
od

ell
in

g
m

et
ho

d
de

ve
lo

pm
en

t

. . .

4 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

developed
in

Meta Model

Inherited from

Instance of
ADOxx Developer

MM-Tool Developer

C++

ALL

ADL created
by

developed
by

developed
by

developed
by

Model

MM – Tool
Development
Part

described
in

developed
in

Method-specific
Meta Model

ADOxx
Meta Model

Instance of

ADOxx
Meta2 Model

MM-tool User

Meta Modelling Platforms Hierarchy: ADOxx

MM … Modelling Method

5 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Introduction of ADOxx:
Definition: Model types, Classes, Attributes and Relations

 Model Types:
A model type is a well-defined sub collection of classes and relation classes of a meta model.

 Classes:
A class is a construct that is used as a template to create objects of that class. The objects of a
class are alternatively called "instances"

 Attributes:
An attribute is a property of a modelling construct such as a model, object or relation. Each
attribute has a type and a value.

 Relations:
A relation class is a construct that is used as a template to create relations between objects. A
relation class is defined between classes. A relation is always a directed connection between
objects, i.e. each relation has a from-side and a to-side.

6 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

SETUP OF
IMPLEMENTATION ENVIRONMENT

7 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Individual Environment

ADOxx Framework

Individual Development Environment from ADOxx.org

Experimentation
Platform

„Project“
Platform

ADOxx Development
Environment

MM-Specific Tool

publishes

can be downloaded

supports development supports usage

User Interaction Tool
ADOxx Kernel

can be downloaded

8 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

OM - Environment

ADOxx Framework

Laboratory Development Environment at OMiLAB

Experimentation
Platform

„Project“
Platform

Development
Environment

MM-Specific Tool

publishes

is provided into

supports development supports usage

User Interaction Tool
ADOxx Kernel

9 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

DEVELOPMENT APPROACHES
Configuration and Implementation Approach

Metamodel
Engineer

Configuration Approach

Implementation Approach

ADOxx
Configuration Tools

ADOxx Library Language
Implementation Tools

ABL

Library Configuration/
Implementation

Class Hierarchy
Management

Graphrep
Notation Editor

AttrRep
Notation Editor

Modeltype/View
Configuration

Library
Validation

External
coupling

Syntax Highlight
AutoComplete

Supporting Development
Services

10 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Administration Toolkit - STARTUP

1. Start Administration Toolkit
2. Login into Administration Toolkit
3. Default Development User
4. Username: Admin
5. Password: password

DB: adoxxdb
6. BACKGROUND: connection to

experimentation database hosted on a server
platform

11 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Development Toolkit - Components

Development Environment:
Library Management
Component

Debug User needed in the
database to start modelling
toolkit for validation
U: debug
P: debug
Create user in “User
Management” component for
testing purposes

12 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

ADOxx Experimentation Library

 Development aggregated in “Application Library” consisting of Static and
Dynamic sub-library
 Dynamic: ADOxx 1.5 Dynamic Experimentation Library
 Static: ADOxx 1.5 Static Experimentation Library

13 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

MODELLING LANGUAGE
IMPLEMENTATION

14 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Modelling Language
Implementation

Modeling
Procedure

Modeling
Method

Modeling
technique Mechanisms

& Algorithms
Modeling
Language

MM … Modelling Method
Reference: Kühn, H. (2004). Methodenintegration im Business Engineering. PhD Thesis, University of Vienna

Implicit
ADOxx support

ADOxx
Mechanisms & Algorithms

Modelling Method Implementation based on ADOxx

MM-Specific
Inheritance of

ADOxx Meta Model

Indirect support of
procedure

MM-Specific
Configuration & Scripting

of ADOxx + Add-Ons

ADOxx Meta Model

Inheritance Configuration & Scripting

15 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

arranges
according to

defines grammar

Semantics

defines meaning

Semantic
Schema

Syntax

Semantic
Mapping

connects
considers

Notation

Modelling
Language

semantics

semantic
domain

syntax notation

modelling
language

defines visualization

visualizes

semantic
mapping

describes
meaning of

defines way of language application delivers

results

modeling
procedure

modelling
technique

modelling
method

mechanisms
& algorithms

used for

used in

generic
mechanisms
& algorithms

hybrid
mechanisms
& algorithms

specific
mechanisms
& algorithms

steps
(design logic)

Reference: Karagiannis, D., Kühn, H.: „Metamodelling Platforms“. In Bauknecht, K., Min Tjoa, A., Quirchmayer, G. (Eds.):
Proceedings of the Third International Conference EC-Web 2002 – Dexa 2002, Aix-en-Provence, France, September 2002,
LNCS 2455, Springer, Berlin/Heidelberg, p. 182 ff.

Generic Modelling Method Framework

16 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Meta Model of Meta Modelling Language

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*
is from - class

is to - class

1..1

1..1

0..*

0..*

1..*
0..*

0..*

0..*

0..* 0..*

1..1
1..1

has
1..* 1..1 1..* 0..*

0..1

1..n

Instanzattribut

Klasse Beziehungstyp

Metamodell

Klassenattribut Facette

Wertebereich

Modelltyp Sicht Entwurfsmuster

Attributprofil

...

regular
expression

... Attributfilter Graphische Dar -
stellung („ Notation “)

Attributtyp

Atomarer Typ Zusammen -
gesetzter Typ

1..* 0..*

Attribut

Metamodell -
ausschnitt

0..*

1..1

1..1
0..* 1..*

-

1..1

1..1

0..*

0..*

1..*
0..*

0..*

0..*

0..* 0..*

1..1
1..1

1..* 1..1
has

1..* 0..*

1..n

instance attribute

class relation type

metamodel

class attribute facet

value range

modeltype view design pattern

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type composed
type

1..* 0..*

attribute

metamodel
part

0..*

1..1

17 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*
is from - class

is to - class

1..1

1..1

0..*

0..*

1..*
0..*

0..*

0..*

0..* 0..*

1..1
1..1

has
1..* 1..1 1..* 0..*

0..1

1..n

Instanzattribut

Klasse Beziehungstyp

Metamodell

Klassenattribut Facette

Wertebereich

Modelltyp Sicht Entwurfsmuster

Attributprofil

...

regular
expression

... Attributfilter Graphische Dar -
stellung („ Notation “)

Attributtyp

Atomarer Typ Zusammen -
gesetzter Typ

1..* 0..*

Attribut

Metamodell -
ausschnitt

0..*

1..1

1..1
0..* 1..*

-

1..1

1..1

0..*

0..*

1..*
0..*

0..*

0..*

0..* 0..*

1..1
1..1

1..* 1..1
has

1..* 0..*

1..n

instance attribute

class relation type

metamodel

class attribute facet

value range

modeltype view design pattern

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type composed
type

1..* 0..*

attribute

metamodel
part

0..*

1..1

Meta Model of Meta Modelling Language

1

2

3

4

5

18 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS

19 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Class Types in ADOxx I

 Pre-defined Abstract Classes (ADOxx meta model class)
 Pre-defined abstract classes are classes that are provided by ADOxx with a given semantic and basic

syntax in form of attributes. They can be used to inherit the pre-defined syntax and the attributes to either
self-defined abstract classes or to classes.

 ADOxx functionality that is provided for the pre-defined abstract classes can be used for any inherited
concrete class. Hence pre-defined and provided ADOxx functionality is consumed due to inheritance of
such pre-defined abstract classes.

 Pre-defined abstract classes are the ADOxx meta model, hence they exist in every meta model based on
ADOxx.

 Nomenclature: __ Class Name __

20 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Class Types in ADOxx II

 Abstract Classes
 Abstract classes are self-defined classes enabling to structure the meta model and define syntax in form

of attributes and semantic, which is inherited by sub-classes.
 Abstract classes either inherit from the root class of the meta model, or from any other class of the meta

model. Hence, they inherit the behaviour from their super-class – which is often a pre-defined abstract
class from the ADOxx meta model.

 Abstract classes enable an efficient meta model, hence they may not be in every ADOxx meta model.
 Nomenclature: _ Class Name _

 (Concrete) Classes
 Classes are self-defined classes defining a concrete modelling class that can be used, when applying the

corresponding modelling language. Hence all model objects in every model created on ADOxx is an
instance of a class.

 Classes inherit the semantic and the attributes from the Pre-defined abstract class and additionally - in
case of inheriting - from the abstract class.

 Classes enable the realisation of a concrete meta model.
 Nomenclature: Class Name

21 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment " I

 __ D_Construct ___
 Super class for „graph-based“ pre-defined meta model.

 __ D_Container __
 Container class provide the relation „is-inside“, hence every object a drawn on the model having its x/y

coordinates within the drawing area of any container b has the relation a Ris-inside b.
 __D_aggregation__

 Aggregation inherits from __D_Container__, hence also provides the „is-inside“ relation and enables a
self-defined „drawing area“. E.g. resizable rectangle.

 __D_swimmlane__
 Swimmlane inherits form __D_Container__, hence also provides the „is-inside“ relation but only enables

either rows (x=0 to x= maximum) or columns (y= 0 to y= maximum) as possible „drawing area“. E.g.
three columns one for input, one for processing, one for output

22 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment " II

 __ D_Event ___
 Event encapsulates all possible notes of a graph and distinguishes between

“D_variable_assignment_object” and “D_end”.
 __ D_end __

 The end concludes the graph and finishes state changes.
 __D_variable_assignment_objects__

 Variable assignment objects enable the change of the state. The state is stored in variables, hence each
of the following concepts have the potential to change the status of variables within a graph:

 Neutral element, start, sub graph, activity, decision, parallelity, merging
 __D_Neutral element__

 Neutral elements do not participate in executing the graph but only display references or state the status.
 __D_Start__

 Start is the starting node of the graph.

23 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment " III

 __ Subgraph ___
 Subgraph substitutes a sub-graph in the graph to make complex graphs more readable. Technically the

subgraph is a pointer to another graph.
 __ Activity__

 Activity is a node in the graph that performs the typical actions the graph is designed for. Activities are
transforming input into output.

 __Decisions__
 Decisions split the graph in several alternative paths.

 __Parallelity__
 Parallelity starts a synchronized path of a graph.

 __Merging__
 Merging ends a synchronized path of a graph.

24 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment" IV

Sample Graph

O X a1

a2

a3

a4

a5

a6

a7 XOR AND

Possible mapping of graph to ADOxx meta model

O X a1

a2

a3

a4

a6

a7

__Start__
__Activity__

XOR

__Decision__

 AND () AND

__Parallelity__ __Merge__

__End__

a5

25 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment" V

 __ D_variable ___
 Variables are objects that store a certain status of the graph. Hence different variables can be defined,

describing different aspects of a graph.
 __ D_random_generator __

 Random generator creates random figures that can be assigned to variables. This is used for simulation.
 __D_resources__

 Resources are properties of graph-nodes represented in an own class hierarchy. Hence descriptive
properties need not only be defined as attributes of graph nodes but can be described as classes using
class hierarchy from resources.

26 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

ADOxx D-Meta Model

I H

G

Inheritance/Dependencies of ADOxx Dynamic Metamodel

__D_container__

__D_Construct__

__D_aggregation__

__D_event__ __D_variable__ __D_random generator__

__LibraryMetaData__

__D_end__

__ Neutral element __ __ Decision __ __ Parallelity __ __ Merging __

Sample – Meta Model

Inheritance of a sample
meta model

X

__D_variable_assignment_object__

__ Activity __

A B

__D_agent__ __D_resource__

W

__ Start __

__D_swimmlane__

D C

E
E

V

X … as a container class
G … as an abstract class
H … as a modelling class
I … as a flow class

__ Subgraph __

Included in tutorial library

To be implemented in
tutorial

27 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Tree-based environment"

 __ S_Construct ___
 Super class for „hierarchy” pre-defined meta model.

 __S_Group__
 Group is a tree node

 __ S_Container __, __S_aggregation__, __S_swimmlane__
 Is a special form of a tree-node, same as in __D_Container__

 __S_resource__
 Resources are properties of tree-nodes represented in an own class hierarchy. Hence descriptive

properties need not only be defined as attributes of tree nodes but can be described as classes using
class hierarchy from resources.

 __S_person__
 In case persons are represented a special class is reserved for implementing person depending

behaviour (privacy etc.).

28 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

ADOxx S-Meta Model

2

S
Z

Inheritance/Dependencies of ADOxx Static Metamodel

__S_container__

__S_Construct__

__S_aggregation__ __S_swimmlane__

__D_agent__ __S_group__ __S_person__

Sample – Meta Model

Inheritance of a sample
meta model

Y

__S_resource__

T Result-of-Count

Included in tutorial library

To be implemented in
tutorial

S … as a resource class
Y … as a container class
H … as a modelling class
Z … as a class derived from T

29 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Realisation of Meta Model
Specification of a meta model in ALL

1. Specify the meta model starting from the „Empty Meta Model“ and add classes etc. with ALL
using a text editor. Abstract class is defined by the classattribute isabstract.

2. Translate ALL into the ADOxx interpretable ABL format and import the meta model into
ADOxx.

class : class-definition { attribute } |
redefclass-definition { redefattribute } .

class-definition : CLASS identifier ':' identifier .

classattribute-definition : CLASSATTRIBUTE identifier TYPE typeidentifier |
CLASSATTRIBUTE identifier TYPE typeidentifier VALUE val |
CLASSATTRIBUTE identifier VALUE val |
CLASSATTRIBUTE identifier TYPE RECORD .

30 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Definition of a Modeling Class

//====================================
CLASS <Aggregation> : <__D_aggregation__>
//====================================

//--- Class <Aggregation> - Class attributes-

//--- Class <Aggregation> - Instance attributes-

Class name

Predefined abstract
classes to be inherited
from

comments

Keyword

31 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS
HANDS-ON

32 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Modification of class hierarchy
of dynamic library

33 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Add a new abstract class below the
root element that is used to define
“_G_” related issues
1. Select root class, click “New” ->

“New class”
2. Name new class as an abstract

class
Naming convention: start and
end with “_”

34 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Make class abstract using
“ClassAbstract“ attribute
-> Effect: class can not be
instantiated in the modelling
tool

35 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Add a new concrete class below
the abstract element that is
used to define a concrete
class

Select the abstract class,
click “New” -> “New
class”

Name new class
The new created class can be

identified on instance level
by the “Name” attribute.
This attribute is
automatically/implicit
available for each class

36 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Add a new concrete class below
the __D_event__ element that is
used to define a flow class

 Select “__D_event__”
class, click “New” ->
“New class”

Name new class
The new created class can be

identified on instance level
by the “Name” attribute.
This attribute is
automatically/implicit
available for each class

37 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Add a new concrete class below the
__D_aggregation__ element that is
used to define Grouping

 Select “__D_aggregation__
”class, click “New” -> “New
class”

Name new class
The new created class can be

identified on instance level by the
“Name” attribute. This attribute is
automatically/implicit available for
each class

38 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS

39 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Definition: Relation

Source and Target Class:
Any class – Pre-defined abstract class, abstract class or class – can act as source
class defining where the relation starts from, as well as target class defining where
the relations ends.

Cardinality:
Cardinality like 1:1, 1:n and n:m relationship is defined in the cardinality of the
relation.

Attributes:
Attributes are descriptive properties of relations and handled like attribute for
classes.

A B RAB

Attribute

Attribute

Attribute

Relationship between objects are defined as relation types
between classes. Relations are defined by their source and

target class, their cardinality, and their attributes.

40 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Relation Types
Relations in ADOxx are expressed either as a class “Relation Class” or as a pointer
in form of an attribute called “InterRef”.
Relation as Class “RC”
• describes relationship between two objects from two or more classes within one model.
• has start and endpoints define which (abstract) classes a relation can connect
• Cardinality and attribute defined the semantic of the relations class
 Relation as Attribute “InterRef”
• Is a special configuration of a Relation Class and describes the relationship between two objects

from two or more classes within or across models.
• Is a pointer represented as an attributed in the class the relation starts from, with defined classes

the relation can point to.
• Cardinality defines the semantic of the InterRef

b (B) a (A)

Model

B (B) A (A)

FROM TO

Metamodel

Instance of conformsTo Instance of conformsTo
Instance of

rab

RCAB

FROM TO

41 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Relation Types: Inheritance of Relation Class

b‘ (B‘) a‘ (A‘)

Model

B (B) A (A)

FROM TO

Metamodel

instance of

conformsTo

instance of

conformsTo

conformsTo

rab

RCAB

FROM TO

A‘ B‘

instance of

subclass of subclass of

42 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Relation Types: Inheritance of InterRef

b‘ a‘

Model

B (B) A
TO

Metamodel

instance of

instance of

A‘ B‘

subclass of subclass of

InterRefAB

(B)

TO

InterRefAB

Inherits attribute

(B)

TO

InterRefAB

conformsTo

43 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Realisation of Meta Model
Specification of a meta model in ALL
 1. Specify the meta model starting from the „Empty Meta Model“ and add relation classes and

interrefs to classes etc. with ALL using a text editor.
2. Translate ALL into the ADOxx interpretable ABL format and import the meta model into

ADOxx.

relationclass : relationclass-definition { instanceattribute } |
redefrelationclass-definition { redefinstanceattribute } .

relationclass-definition : RELATIONCLASS identifier FROM identifier TO identifier .

instanceattribute-definition : ATTRIBUTE identifier TYPE typeidentifier |
ATTRIBUTE identifier TYPE typeidentifier VALUE val |
ATTRIBUTE identifier VALUE val |
ATTRIBUTE identifier TYPE RECORD .

instanceattribute-setting : ATTRIBUTE identifier VALUE val .

typeidentifier : INTEGER |

INTERREF |
EXPRESSION |

. . .

44 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS
HANDS-ON

45 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Definition of Relation Class
Add a new relation class to

connect classes
Click “New” -> “New relation

class”
Name new relation class
Define from-class
Define to-class

46 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. CLASS ATTRIBUTE &
ATTRIBUTE

47 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Definitions: Data Object Model 1

• A Facet has exactly three properties: a name, a type and a value. Every one of these three
properties is saved in one slot. Possible facet types are STRING, INTEGER and DOUBLE.

• Attributes define certain properties of classes or relation classes. Every attribute consists of
at least three facets: a name facet (name: "Name", type: STRING, value: "..."), a type facet
(name: "Type", type: INTEGER, value: [STRING, INTEGER, DOUBLE, LONGSTRING,
DISTRIBUTION, EXPRESSION, TIME, ENUMERATION, ENUMERATIONLIST,
PROGRAMCALL, INTERREF, RECORD, PROFILEREFERENCE]) and one value facet
(name: "Value", type: [STRING, INTEGER, DOUBLE, RECORD], value: "...").

• Every attribute has an additional facet called "AttributeHelpText" which contains user help.
Depending on the type of the attribute, additional facets may be defined.

• Attributes can be either class or instance attributes. Class attributes receive one value for
every class. Instance attributes receive one value of each instance or relation.

• A Class derived from another class is called subclass and inherits all attributes that are
defined in the class from which it is derived. A class from which other classes are derived is
called superclass. Relation classes (or just relations) can not be inherited. Relations are
always defined between exactly two classes: one source and one target class.

48 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Definitions: Data Object Model 2
Every object is identified by a unique id. The following chart
shows the relations between different objects, used to define
concepts like class, relation, instance, attribute ...

49 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Basic: Definition of Attributes
Attributes for classes and relation classes have to be defined in the definition
section of the class/relation class with 'TYPE'.
The following attribute types are possible:

• INTEGER integer
• DOUBLE floating number
• STRING string – max. 3699 symbols
• LONGSTRING string – max. 32000 symbols
• TIME time
• DATE date
• DATETIME date and time
• ENUMERATION enumeration for selecting a characteristic
• ENUMERATIONLIST enumeration for selecting one or several characteristics
• DISTRIBUTION statistical distribution
• PROGRAMCALL enumeration for selecting a program
• RECORD a table of attributes
• EXPRESSION a formula
• INTERREF reference on a model or an instance
• ATTRPROFREF a preset set of attribute values

50 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

51 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Basics: Selected Special Attributes
The following class attributes can be customized:

AttrRep*: Notebook-Definition (all classes)

GraphRep*: Graphical representation (object- and relation classes)

Model pointer*: Relations to other models (object classes)

Class cardinality*: Relation constraints (object classes)

__Conversion__X: Conversion from one object to another

*are class attributes from Root Class (D|S_Construct) hence inherited by each class
X any class can define this class attribute

52 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

GRAPHREP

53 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Basics: Graphical Notation of Classes
Static Notation:

 Semiotic Clarity
 Perceptual Discriminability
 Semantic Transparency
 Complexity Management
 Cognitive Integration
 Visual Expressiveness
 Dual Coding
 Graphic Economy
 Cognitive Fitness

Dynamic Notation:

 Event based changes of notations (e.g. attribute change)

Reference

54 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GRAPHREP I

 Class attribute GRAPHREP is of type long string, hence the attribute value is a text that is
interpreted as a script by the GRAPHREP interpreter.

 The following types of elements are distinguished:
 Style elements
 Shape elements
 Variable assigning elements
 Context elements
 Control elements

 The representation characteristic for following shape elements is modified by style elements:
 PEN sets the characteristics of the outline pen for shape elements.
 FILL sets the characteristics of the fill-in brush for shape elements.
 SHADOW switches the additional shadow of shape elements on or off
 STRETCH switches geometric stretching on or off
 FONT sets the font for displayed texts and attribute values.

 PEN determines in which manner the lines and curves are drawn, i.e. how strong, in which color
and in which style (e.g. dashed line). For shape elements which can be filled, only the outline of
the shape is influenced by the current pen. The filling of shapes is controlled by the current fill-in
brush, which can be set with BRUSH.

 Shape elements which can not be filled are POINT, LINE, POLYLINE, ARC and CURVE. Fillable
elements are RECTANGLE, POLYGON, ELLIPSE, PIE and COMPOUND.

 For shape elements coordinates (positions) have to be specified. Coordinates here are relative to
the position of the particular object, i.e. they are added to the object's position.

55 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GRAPHREP II

 Context elements just exist for relations. They specify whether the starting, the middle or the
endpoint of the relation is being defined. Keyword "START" defines that the following
description refers to the start point of the relation until the next context element
START/MIDDLE/END is specified. A fourth context element (EDGE) triggers the drawing of
a relation's edge. This is the line from the starting point via possible bend points to the end
point of a relation.

 For relations the starting, the middle and the end (point) can be defined. Positions then refer
to one of these three points. However, the coordinate system is rotated depending on the
direction of the relation instance. On defining a relation's GraphRep, you have to regard the
relation as going horizontally from the left to the right. The coordinate system's origin then is
the point of the relation for which the graphical representation currently is being defined, i.e.
start, middle or end point.

56 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GRAPHREP III
 On the x-axis the coordinate values increase from the left to the right, on the y-

axis they increase from top to bottom (differing from mathematics). Arcs and
pies are rotated counter-clockwise.

 ATTENTION: The unit of measure for positions and proportions (cm or pt) has to
be specified in every case. Pixel values cannot be used.

 On the drawing of an object, the elements are processed sequentially. However,
the control elements make it possible to skip sections during the element
processing depending on variables. For example, attribute values of the object
to be represented may be assigned to such variables. A graphical
representation depending on object attributes can thus be obtained using
variable assignment elements combined with control elements. Additional
possibilities are given from using variables in graphical elements.

57 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GRAPHREP IV
Graph Elements

For detailed explanation see online support for each of the elements

58 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Some GraphRep-Commands (1)

GRAPHREP

 The GraphRep definition must start with this command to be valid. The
parameter layer defines whether an object will be displayed above or below
other objects. The parameter sizing specifies if the size can be changed.

SHADOW

 Specifies if the class will have a shadow or if it should be drawn “flat”.
PEN

 Defines the pens width/color/style.
FILL

 Defines the fill color/style and transparency.
ATTR

 Shows an attribute value on the drawing area (e.g. object name).

59 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Some GraphRep-Commands (2)

POINT
 Draws a point.

LINE / POLYLINE
 Draws a single line (LINE) or several lines (POLYLINE).

CURVE / ARC
 Draws a curve according to a mathematical function or an arc.

POLYGON
 Draws a polygon consisting of several straight lines where each corner is defined as a single point.

RECTANGLE / ROUNDRECT / ELLIPSE / PIE
 A rectangle, rectangle with rounded edges, an ellipse or a segment of an ellipse.

COMPOUND
 A composite filled Form (from LINE, POLYLINE und CURVE-Elements).

60 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Some GraphRep-Commands (3)

TEXT

 Allows to show a specific text on the drawing area (Letters, Symbols …).
FONT

 Defines the font style/color for drawn text.
BITMAP

 Allows to embed a picture (*.BMP-Format).
TABLE

 Creates a table for structuring the attribute representation of an object.

Hint:
Graphical elements can be combined for more complex drawing!

61 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

The GraphRep Coordinate Plane

A coordinate plane is used to provide an exact positioning of the GraphRep elements. It is
composed of:

The null coordinate is in the middle
Positive values go to the right and down
Negative values go to the left and up

Hint:
 It is required to specify the Unit (cm or pt). Units in pixels are not possible.
 The direction of rotation progresses counter-clockwise!

62 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Structural Commands

SET

Sets a variable with a constant or the result of an expression, which in turn can
contain variables.

AVAL

Sets variables with the values from an attribute of the instantiated object.
IF / ELSIF / ELSE / ENDIF

Allows to change the representation based on values.
BITMAPINFO

Reads the height and width of a bitmap file, allowing to properly represent it.
TEXTBOX / ATTRBOX

Similar to TEXT and ATTR. However instead of drawing the values it sets specific
variables with the rectangle area they would need.

63 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

GRAPHREP
HANDS-ON

64 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

POLYGON with 7
corners

x1:1.5cm
y1:0cm

x2:0.5cm
y2:-1cm

x3:0.5cm
y3:-0.5cm

x4:-1.5cm
y4:-0.5cm

x5:-1.5cm
y5:0.5cm

x6:0.5cm
y6:0.5cm

x7:0.5cm
y7:1cm

NEGATIVE POSITIVE

NEGATIVE

POSITIVE

GraphRep Example Workflow
GRAPHREP Preparation for Class “I”

OBJECT NAME

65 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Example Workflow
GRAPHREP Implementation for Class
“I”

1. Since this class is concrete, a
graphical representation needs to be
defined.

2. Use inherited class attribute
“GraphRep” to define the graphical
representation

3. Write GRAPHREP code to provide a
notation for the class

66 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commented GraphRep Code
Class: I

GRAPHREP
FILL color:royalblue
POLYGON 7 x1:1.5cm y1:0cm x2:0.5cm
y2:-1cm x3:0.5cm y3:-0.5cm x4:-1.5cm

y4:-0.5cm x5:-1.5cm y5:0.5cm

x6:0.5cm y6:0.5cm x7:0.5cm y7:1cm

ATTR "Name" y:1.4cm w:c h:c

In case attribute name is
available, it is shown here

67 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

NEGATIVE POSITIVE

NEGATIVE

POSITIVE

OBJECT NAME

x:1.5cm
y:0cm

x:-1.5cm
y:0cm

x:0cm
y:-1cm

x:0cm
y:1cm

GraphRep Example Workflow
GRAPHREP Preparation for Class
“H”

68 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Example Workflow
GRAPHREP Implementation for Class
“H”

1. Since this class is concrete, a
graphical representation needs to be
defined.

2. Use inherited class attribute
“GraphRep” to define the graphical
representation

3. Write GRAPHREP code to provide a
notation for the class

69 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commented GraphRep Code: H
GRAPHREP
#Container Rectangle

RECTANGLE x:-1.5cm y:-0.5cm w:3cm h:1cm
#Arrow Lines

PEN style:dash
LINE x1:-0.8cm x2:0.8cm y1:-0.2cm y2:-0.2cm
LINE x1:-0.8cm x2:0.8cm y1:0.2cm y2:0.2cm
#Arrow Ends

PEN style:solid
LINE x1:-0.8cm x2:-0.6cm y1:-0.2cm y2:-0.1cm
LINE x1:-0.8cm x2:-0.6cm y1:-0.2cm y2:-0.3cm
LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.1cm
LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.3cm

#Right actor

ELLIPSE x:1.1cm y:-0.2cm rx:0.15cm ry:0.15cm
LINE x1:1.1cm x2:1.1cm y1:-0.05cm y2:0.2cm
LINE x1:1.1cm x2:0.95cm y1:0.2cm y2:.3cm
LINE x1:1.1cm x2:1.25cm y1:0.2cm y2:.3cm
LINE x1:0.95cm x2:1.25cm

#Left actor

ELLIPSE x:-1.1cm y:-0.2cm rx:0.15cm ry:0.15cm
LINE x1:-1.1cm x2:-1.1cm y1:-0.05cm y2:0.2cm
LINE x1:-1.1cm x2:-0.95cm y1:0.2cm y2:.3cm
LINE x1:-1.1cm x2:-1.25cm y1:0.2cm y2:.3cm
LINE x1:-0.95cm x2:-1.25cm

#Attribute Representation

ATTR "Name" y:0.8cm w:c h:c

In case attribute name is
available, it is shown

here

70 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

NEGATIVE POSITIVE

NEGATIVE

POSITIVE

x:2.5cm
y:0cm

x:-2.5cm
y:0cm

x:2.5cm
y:0cm

x:0cm
y:2.5cm

RESIZEABLE

RESIZEABLE

RESIZEABLE

RESIZEABLE

SHOW BACKGROUND IMAGE

ITALIC = FUNCTIONALITY

GraphRep Example Workflow
GRAPHREP Preparation for Class
“X”

71 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Example Workflow
GRAPHREP Implementation for Class “X” 1. Since this class is concrete, a

graphical representation needs to be
defined.

2. Use inherited class attribute
“GraphRep” to define the graphical
representation

3. Write GRAPHREP code to provide a
notation for the class

72 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commented GraphRep Code: X

GRAPHREP sizing:asymmetrical
PEN style:dash
AVAL set-default:"" a:"External graphic"
#handling of programmcall attribute - cut out
the filename
SET e:(LEN a)
SET s:(search(a,"@",0) + 1)
SET grfk:(copy (a, s, e - s))
SET s:((LEN grfk) - 4)
SET e:((LEN grfk))
SET ext:(copy (grfk, s, e))
SET ext:(lower(ext))
TABLE w:5cm h:5cm cols:1 rows:1
RECTANGLE w:(tabw1) h:(tabh1)
IF ((ext=".bmp") OR (ext=".gif")OR(ext=".ico")
OR (ext=".jpg") OR (ext=".jpeg") OR
(ext=".png") OR (ext=".targa") OR (ext=".tiff")
OR (ext=".wbmp") OR (ext=".xpm"))
 BITMAP (grfk) w:(tabw1) h:(tabh1)
ENDIF

RESIZE

FILE HANDLING

IMAGE HANDLING

73 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commented GraphRep: hRi (uni-directional)

GRAPHREP rounded:0.05cm
SHADOW mode:off
PEN color:red w:0.02cm color:$727272
EDGE

END
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
x3:-0.2cm y3:-0.11cm

GRPHREP OF EDGE

GRAPHREP END

74 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commented GraphRep: bi-directional example

GRAPHREP rounded:0.05cm
SHADOW mode:off
PEN color:red w:0.02cmcolor:$727272
 style:dash

START
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
 x3:-0.2cm y3:-0.11cm

EDGE

END
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
 x3:-0.2cm y3:-0.11cm

GRPHREP OF EDGE

GRAPHREP END

GRAPHREP START

75 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

GRAPHREP
EXAMPLES

76 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GRAPHREP
SHADOW off

FILL color:blue
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GRAPHREP

FILL color:blue
POLYGON 3 x1:-1cm y1:1cm x2:0cm
y2:-1cm x3:1cm y3:1cm

ATTR "Name" x:0cm y:1cm w:c

GraphRep Examples
Basic Forms

77 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GRAPHREP

FILL color:blue
POLYGON 3 x1:-1cm y1:1cm x2:0cm y2:-1cm x3:1cm
y3:1cm
FILL color:yellow
POLYGON 3 x1:-0.6cm y1:0.6cm x2:0cm y2:-0.6cm
x3:0.6cm y3:0.6cm

ATTR "Name" x:0cm y:1cm w:c

GRAPHREP
SHADOW off

FILL color:blue
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GraphRep Examples
Combined Elements 1

78 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GRAPHREP
SHADOW off

FILL color:blue

PEN style:solid w:0.01cm
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm
PEN style:solid w:0.1cm
POLYGON 3 x1:-0.8cm y1:0.6cm x2:0cm y2:-1cm x3:0.8cm
y3:0.6cm

FILL color:yellow
PEN style:solid w:0.01cm
ELLIPSE x:0.00cm y:0cm rx:0.5cm ry:0.5cm
PEN style:solid w:0.1cm
POLYGON 3 x1:-0.4cm y1:0.3cm x2:0cm y2:-0.4cm x3:0.4cm
y3:0.3cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GraphRep Examples
Combined Elements 2

79 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

3

GRAPHREP
SHADOW off

AVAL set-default: 2 ar:"number of counts"

TEXT (ar)

FILL color:lightgray
ELLIPSE x:0.0cm y:0cm rx:(CM (ar)) ry:(CM (ar))

ATTR "number of counts" x:0.0cm y:-0.05cm w:c

ATTR "Name" x:0.00cm y:1.0cm w:c

1

2

GraphRep Examples
Conditional representation - Sizing

80 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Examples:
Basic forms

 GRAPHREP
PEN w:0.05cm
FILL color:yellow
POLYGON 3 x1:-.7cm y1:.7cm x2:.7cm y2:.7cm x3:0cm y3:-.7cm
ATTR "Name" y:.8cm w:c:2.8cm h:t

GRAPHREP
PEN w:0.05cm
FILL color:dodgerblue
RECTANGLE x:-1.4cm y:-.7cm w:2.8cm h:1.4cm
ATTR "Name" y:.8cm w:c h:t

GRAPHREP
FILL color:mediumspringgreen
ELLIPSE rx:0.70cm ry:0.70cm
ATTR "Name" y:0.8cm w:c:1.4cm h:t
FONT "Arial" h:32pt color:black
TEXT "V" y:0.13cm w:c h:c

81 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Examples:
 Conditional representation (1)

GRAPHREP
AVAL col:"fontcolor"
AVAL set-default:"x" p:"referenced process"
AVAL sub:"referenced process "
AVAL i:"Sequence"
AVAL sn:"subprocessname"
FILL color:dodgerblue
PEN w:0.05cm
POLYGON 3 x1:-.7cm y1:.7cm x2:.7cm y2:.7cm x3:0cm y3:-.7cm
SHADOW mode:off
IF (NOT LEN p)
 PEN style:dot
ENDIF
LINE x1:-.4cm y1:.5cm x2:.4cm y2:.5cm
LINE x1:.1cm y1:.4cm x2:.4cm y2:.5cm
LINE x1:.1cm y1:.6cm x2:.4cm y2:.5cm
FONT color:(col)
IF (sub = "")
 ATTR "Name" y:.8cm w:c:2.8cm h:t
ELSE
 FONT "Arial" h:8pt bold
 ATTR "referenced process" y:(texty2 + .1cm) w:c:2.8cm h:t format:"%m"
 FONT
ENDIF

Process call with /
without

a reference

82 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Examples:
Conditional representation (2)

GRAPHREP
AVAL set-default:"Modeling finished" b:"Status"
SHADOW off
FILL style:null
POLYGON 4 x1:-1.54cm y1:0.92cm x2:1.54cm y2:0.92cm
 x3:1.54cm y3:-0.98cm x4:-1.54cm y4:-0.98cm
LINE x1:-1.54cm y1:-0.50cm x2:1.54cm y2:-0.50cm
IF (b = "Modeling not finished")
 LINE x1:1.25cm y1:-1.5cm x2:1.25cm y2:-1.3cm
 LINE x1:1.25cm y1:-1.22cm x2:1.25cm y2:-1.18cm
 PEN color:red
 POLYGON 3 x1:1cm y1:-1.1cm x2:1.25cm y2:-1.6cm
 x3:1.50cm y3:-1.1cm
ENDIF

Condition not
fulfilled

Condition
fulfilled

83 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Examples:
Tables

GRAPHREP sizing:asymmetrical
SHADOW off
PEN color:black
FILL style:null
TABLE x:-3.5cm y:-2cm w:7cm h:4cm
 cols:3 rows:4
 w1:1.3cm w2:50% w3:50%
 h1:1cm h2:0.5cm h3:0.5cm h4:100%

Table with 4 rows and 3 columns

Hint:
When manually changing the size of the table only the parameters having values
specified as percent will change in size. Fields with absolute values will always stay the same.

84 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Examples:
 Table borders

Tables can be drawn with or without borders. Borders are defined as lines using the corners of
the tables cells.
For instance: the top left corner of the table has the coordinate (tabx0, taby0), the top right
corner of the first cell has (tabx1, taby0) etc.

LINE x1:(tabx0) y1:(taby0) x2:(tabx3) y2:(taby0)
LINE x1:(tabx0) y1:(taby1) x2:(tabx3) y2:(taby1)
LINE x1:(tabx0) y1:(taby2) x2:(tabx3) y2:(taby2)
LINE x1:(tabx0) y1:(taby3) x2:(tabx3) y2:(taby3)
LINE x1:(tabx0) y1:(taby4) x2:(tabx3) y2:(taby4)

LINE x1:(tabx0) y1:(taby0) x2:(tabx0) y2:(taby4)
LINE x1:(tabx1) y1:(taby1) x2:(tabx1) y2:(taby3)
LINE x1:(tabx2) y1:(taby2) x2:(tabx2) y2:(taby3)
LINE x1:(tabx3) y1:(taby0) x2:(tabx3) y2:(taby4) Table with 4 rows and 3 columns

only some lines are arranged

85 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Examples:
 Complex, attribute dependent representations

GRAPHREP
AVAL a:"External Documentation"
PEN w:0.1cm
FILL r:200 g:200 b:200
POLYGON 4 x1:0cm y1:-1cm x2:1cm y2:0cm
 x3:0cm y3:1cm x4:-1cm y4:0cm
ATTR "Name" y:1.2cm w:c:2.8cm h:t
IF (search(lower(a),"winword",0) >= 0)
 PEN w:0.07cm
 FILL r:0 g:255 b:255
 ...

 IF (search(lower(a),".doc",0) >=0)
 ...
 ENDIF
ELSIF (search(lower(a),"powerpnt",0) >= 0)
 ...
ENDIF

Search for
Text pattern

Nested conditions

86 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Examples:
 Compound representation

GRAPHREP
COMPOUND 2
LINE x1:1.0cm y1:-.7cm x2:-1.0cm y2:-.7cm
CURVE "t" f:(t) g:(-.2*sin(3.14*(t+1))+.7) from:-1 to:1

Start/Endpoint

Verschachtelte Bedingungen Hint:
 The compound consists of one line and one curve.
 The endpoint of the previous element is the start point for the following.
 A connection is made automatically between to elements if necessary. (sequence is important!).

Linie

Curve

87 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Definition for Relation Classes

 The same commands from normal classes can be used for relation classes as well. In
addition the following keywords are available:

 EDGE
 Defines the representation of the relation edge (line).

 START / MIDDLE / END
 This command defines the representation of the important edge parts. If MIDDLE is defined, then the

middle of the edge can be moved in the model.

START END

EDGE

no MIDDLE defined

88 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GraphRep Example:
Connector

GRAPHREP
PEN color:lightblue w:.08cm
EDGE start-trans:-.3cm end-trans:-.3cm
START
POLYLINE 4 x1:0cm y1:0cm x2:-.1cm y2:.18cm
 x3:-.2cm y3:-.18cm x4:-.3cm y4:0cm
END
POLYLINE 3 x1:-.4cm y1:.15cm x2:0cm y2:0cm
 x3:-.4cm y3:-.15cm

GRAPHREP
START
FILL color:black
ELLIPSE x:-.1cm rx:.1cm ry:.1cm
END
LINE x1:-.3cm y1:.1cm x2:0cm y2:0cm
LINE x1:-.3cm y1:-.1cm x2:0cm y2:0cm

A

B

89 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

ATTRREP

90 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Basics: AttrRep

 The class attribute „AttrRep“ controls the availability and structure of the
ADOxx-Notebook. If it has no value then the class will have no Notebook.

 The following elements are available to define the Notebook:

 Chapter: Each Notebook must have at least one chapter to show some
attributes. Chapters of a Notebook are shown as tabs on the right side.

 Attributes: Attributes are embedded in a chapter where they should be shown.
The distribution and sequence of the attributes is also defined in the AttrRep.

 Groups: Attributes can be combined to groups inside of a chapter.

91 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

The AttrRep-Commands
NOTEBOOK

The Notebook-Definition must start with this command to be valid. It has no parameters.
CHAPTER „chapterName“

Chapters can be started with this command. The chapter will have the name <chapterName> (Hint:
A command ENDCHAPTER is not necessary)

ATTRIBUTE „AttrName“
The attribute with the name <AttrName> will be shown in the notebook on this position. Some
attribute types also allow different parameters to adapt the actual display.

GROUP „groupName“ / ENDGROUP
The attributes listed between GROUP and ENDGROUP will be enclosed by a group-box with the
name <groupName>

SET_ACCESS usergroup: userGroupSpec
Attributes following this command will only be shown to the user group <userGroupSpec>. This
restriction can be revoked using „SET_ACCESS usergroup: all“

92 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

ATTRREP

 Classattribute “AttrRep“ is of type long string, hence the text entered as value is
interpreted as configuration script of the so-called NOTEBOOK.

 Each NOTEBOOK has CHAPTERS, which contains a list of attributes that may be
grouped.

 Relations that are allowed for this class can be automatically created as an own
chapter.

 Appearance of attributes is defined by lines, dialog, control types (ctrltype), width or
format.

 Access rights per attribute can be defined.

93 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AttrRep Syntax Reference

94 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

 CLASSATTRIBUTE <AttrRep>
 TYPE STRING
 VALUE "
 NOTEBOOK with-relations
 CHAPTER \"Description\"
 ATTR \"Name\"
 ATTR \"Presentation\"
 ATTR \"Description\" lines:5
 ATTR \"Comment\" lines:5
 ATTR \"Color\" dialog:color
 "
 FACET <MultiLineString>
 VALUE 0

 FACET <AttributeHelpText>
 VALUE ""

 FACET <AttributeRegularExpression>
 VALUE ""

Example for a AttrRep Definition in ALL

Keyword

Attribute name:
“AttrRep“ is a special attribute
which defines what other
attributes are processed by
the ADOxx documentation
function

Value:
The string of the “AttrRep”
attributes is defined as a
“Notebook”. Therefore a
specific syntax is used.

A help text can be provided for
the attribute.

Type definition

95 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

ATTRREP
HANDS-ON

96 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Example Workflow AttrRep 1. Since this class is concrete, a
attribute representation needs to be
defined.

2. Use inherited class attribute
“AttrRep” to define the attribute
representation

3. Write ATTRREP code to provide a
notation for the class

97 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commented AttrRep Code

Grouping of
attributes on same

chapter

Chapter Structure

Attributes

Attribute
Representation

NOTEBOOK

CHAPTER "Definition"

ATTR "Name"

GROUP "Definition"

ATTR "Description"

ATTR "External content"

ENDGROUP

NOTEBOOK

CHAPTER "Definition"

ATTR "Name"

ATTR "Description"

CHAPTER "Dialectic Influence"

ATTR "Influencing dialectics" lines:10

NOTEBOOK

CHAPTER "Definition"

ATTR "External graphic"

98 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

CLASS
CARDINALITIES

99 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Class Attribute “Class cardinality”

 The class attribute „Class cardinality “ contains the cardinality definition of the current class.
The cardinality of a class describes

 the minimal/maximal number of objects of this class per model und
 the minimal/maximal number of relations of a specific type,

incoming or outgoing from the object.

 If no cardinalities are defined then there are also no restrictions for this class.

Hint:
 A validation of the class cardinality can be performed in the toolkit either

with each save or only when manually selecting the function (depending on the customizing).
 Please consult the ADOxx-Manual volume 4 for a detailed description of the cardinality definition.

100 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commands of the Class Cardinality
CARDINALITIES

The cardinality definition must start with this command to be valid. It has no
parameters.

RELATION „RelationName“

Restricts the following commands to the relation class with the name
<RelationName>.

FROM_CLASS „ClassName“ / TO_CLASS „ClassName“

Restricts the following commands to relations with the class of <ClassName>.

101 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Parameters of the Class Cardinality

min-objects / max-objects

Specifies how many objects of a class can minimally/maximally be available in the
model.

min-relations / max-relations

Specifies the minimal/maximal number of relations which can be connected with this
object from this class.

max-outgoing / min-outgoing / max-incoming / min-
incoming

Restricts the number of allowed incoming/outgoing relations; either:
in general or
with a preceding RELATION command only for this relation or
with a preceding FROM_CLASS or TO_CLASS command only for relations to these classes.

102 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

CLASS CARDINALITIES
HANDS-ON

103 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Class cardinality: Examples

 Only one object of the class „A" should exist per model.
 As well no connectors anyRany schould exist incomming to objects of class „A" and only

one connector anyRany maximum should exist outgoing from objects of class „A".

 The cardinalities of the class „A" have to be defined in the following way:
 CARDINALITIES max-objects:1

RELATION "anyRany" max-incoming:0 max-outgoing:1

104 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

CONVERSION

105 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Class Attribute „__Conversion__“

The class attribute „Conversion“ defines and controls the conversion of a modeling object from
one class to another.

When converting three things happen. First a new object of the defined class is created.
Afterwards all attribute values are copied into the new object as defined in the “Conversion”
attribute. In the end the old object is deleted.

Hint:
 The possibility for the conversion must be defined manually in the

metamodel, so it can be used later in the tool.
 The modeler can access the functionality from the context menu in

the ADOxx-BPM-Toolkit.

106 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commands and Parameters for Conversion
CLASS „ClassName“

Specifies that an object can be converted into the target class <ClassName>.
Several target classes can be specified.

ATTR „AttrName“

Defines the attributes from which the values will be copied during the conversion.
from

This parameter is used if values should be copied from the source object to the
target object, but the corresponding attributes have different names. from
specifies the name of the source attribute.

Hint:
A detailed description of the Conversion-Grammar can be found in
the ADOxx-Manual volume 4.

107 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

The commands and parameters for the conversion

If you define __Conversion__ for the class „A" with
 CLASS „B"
 ATTR „ba1"
 ATTR „ba2" from: „aa3"

this means that

• objects of class „A" can be converted to objects of class „B",
• the aa1 is assigned from A to ba1 in B as the have the same name,
• the aa3 from A is assigned to Ba2 from B as they have different names,

108 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

CONVERSION
HANDS-ON

109 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Conversion example:
 Instances of C->E

CLASS "E"
ATTR "Name"
ATTR "a1"
ATTR "a2"
ATTR "a3"
ATTR "a4"
ATTR "e1" from:"a1"
ATTR "e2" from:"a2"
ATTR "e3" from:"a3"

110 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

MODEL POINTER

111 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

The class attribute “Model pointer“

The class attribute „Model pointer“ priorities one specified pointer with the ability to get from
one object in a model directly to another model.

The name of the attribute which provides the reference to another model or object is
specified in the model pointer attribute field.

ADOxx provides a short cut with <Ctrl> + double click to follow the pointer
 CLASSATTRIBUTE <Model pointer>
 VALUE "ra"
 ATTRIBUTE <ra>
 TYPE INTERREF
 FACET <MultiLineString>
 VALUE 0

 FACET <AttributeHelpText>
 VALUE "helptext"

 FACET <AttributeInterRefDomain>
 VALUE "VALUE "REFDOMAIN max:1
 OBJREF
 mt:\"my model type\"
 c:\"my class\"
 max:1 "

112 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

MODEL POINTER
HANDS-ON

113 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Model pointer: Example

114 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

3. CLASS ATTRIBUTE &
ATTRIBUTE

115 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Basics: Definition of Attributes

 Attributes for classes and relation classes have to be defined in the definition section of the
class/relation class with 'TYPE'.

 The following attribute types are possible:

 INTEGER integer
 DOUBLE floating number
 STRING string – max. 3699 symbols
 LONGSTRING string – max. 32000 symbols
 TIME time
 DATE date
 DATETIME date and time
 ENUMERATION enumeration for selecting a characteristic
 ENUMERATIONLIST enumeration for selecting one or several characteristics
 DISTRIBUTION statistical distribution
 PROGRAMCALL enumeration for selecting a program
 RECORD a table of attributes
 EXPRESSION a formula
 INTERREF reference on a model or an instance
 ATTRPROFREF a preset set of attribute values

116 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
Numerical Attributes: Integer (INTEGER)

 An attribute of the type "Integer" is defined as an integer from -1,999,999,999 to
1,999,999,999.

 An ADOxx integer is limited to 10 digits plus an optional sign ('+' or '-')
 The standard value of attributes of this type is "0" or a value defined

117 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their appearance
Numerical Attributes: Floating number (DOUBLE)

 The amount of decimal places is defined by the attribute definition
 An attribute of the type "Double" is defined for a float within +/-999,999,999,999,999 for an

integer (without decimal places) or +/-999,999,999.999999 for figures with 6 decimals.
 The corresponding attribute value is displayed to 6 decimal places. That means that a

double value should not exceed a total of 15 significant digits with at last 6 decimal digits!
 The standard value of attributes of this type is "0.000000" or a value defined in the

application library.

118 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
String attributes: String (STRING)

 An attribute of the type "String" is defined for texts up to 3700 characters of any type.
 Hint: The maximum number of characters is 250 for name. That concerns classes, relation, instances,

attributes, application models, libraries and application libraries.
 Model names have a special rule!

 The standard value of attributes of this type is "" (no entry) or a value defined in the

application library.

119 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
String attributes: Longstring (LONGSTRING):

 Some text attributes are already defined as „multi-line“. The parameter lines can be used to
specify how many lines should be shown in the text field of the Notebook.

 The parameter dialog can be used to specify special input supports in place of the standard
one.

 An attribute of type "Longstring" is defined for texts up to 32000 characters of any type.
 The standard value of attributes of this type is "" (no entry) or a value defined in the

application library.

120 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
Enumerations / Enumeration lists: Enumeration (ENUMERATION)

 The parameter ctrltype sets how the enumeration should appear, as a drop down list,
as radio buttons or as checkboxes (only if two possible values).

 An attribute of the type "Enumeration" is characterised by a defined set of values. An
"Enumeration" attribute has exactly one value of this set.

 The standard value of this type is specified in the library definition.

121 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
Enumerations / Enumeration lists: Enumeration list(ENUMERATIONLIST):

 An attribute of the type "Enumeration list" is characterised by a defined set of values. An
"Enumeration list" attribute has either none, one or several values of this set. The difference
to an "Enumeration" attribute is, that an "Enumeration list" attribute can have more than one
entry selected!

 The standard value of this type must specified in the library definition.

122 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
Date / Time: Date (DATE)

The ADOxx format for date is YYYY:MM:DD
Date / Time: Time (TIME)

The ADOxx format time is YY:MM:DDD:HH:MM:SS
Date / Time: Date and Time (DATETIME)

The ADOxx format time is YYYY:MM:DD HH:MM:SS

 Time format YY:DDD:HH:MM:SS (years:days:hours:minutes:seconds). Valid day ranges are

from 0 to 365, valid hours are between 0 and 23, valid minutes and valid seconds are
between 0 and 59.

 The standard value of attributes of this type is "00:000:00:00:00" or a value defined in the
application library.

123 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
References / Program calls: Intermodel reference (INTERREF)

124 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
References / Program calls: Programcall (PROGRAMCALL)

 A PROGRAMCALL attribute is characterized by a fixed set of items. These items are related
to AdoScripts which can be called via the user interface. A PROGRAMCALL attribute value
consists of at most one of the defined items and an optional parameter.

125 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
Table: Table (TABLE)

Tables will appear in Notebooks according to the definition of the table class.
Following adjustments can be done in AttrRep of the table class:
 which columns should be shown
 in what sequence
 Relative width - Parameter width

An Attribute of Type "Table" (RECORD) is defined by a flexible List-/Table-Administration of
Attribute Types that are put together.
The standard Value for Attributes of this Type depends on the Attribute Types defined in the Table
Class.

126 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance
Expressions / Attribute profile references: Expression(EXPRESSION)

 Every definition of expression attributes is started with the keyword EXPR. The result type is
is defined with the attribute type: and the default formula is defined with the attribute expr:.
Every time you create an instance (a model, object, or connector), this formula will be used
to compute the result value of the expression.

 By setting the modifier fixed:, you make the expression attribute a fixed expression. The
user will the not be able to change the formula in the Modelling Toolkit.

 The formula itself (defined in the attribute expr:) must never be longer than 3600 characters.
 For expressions with result type double, the attribute format can be used to specify the

number of digits that should be displayed on the user interface. Note: the number of digits
displayed on the user interface do not affect the internal precision of the expression result
value.

127 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Definition

attribute-definition : instanceattribute-definition |
classattribute-definition .

classattribute-definition : CLASSATTRIBUTE identifier TYPE typeidentifier |
CLASSATTRIBUTE identifier TYPE typeidentifier VALUE val |
CLASSATTRIBUTE identifier VALUE val |
CLASSATTRIBUTE identifier TYPE RECORD .

instanceattribute-definition : ATTRIBUTE identifier TYPE typeidentifier |
ATTRIBUTE identifier TYPE typeidentifier VALUE val |
ATTRIBUTE identifier VALUE val |
ATTRIBUTE identifier TYPE RECORD .

typeidentifier : INTEGER |
DOUBLE |
STRING |
DISTRIBUTION |
TIME |
ENUMERATION |
ENUMERATIONLIST |
PROGRAMCALL |
INTERREF |
EXPRESSION |
ATTRPROFREF .

128 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

3. CLASS ATTRIBUTE
& ATTRIBUTE

HANDS-ON

129 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Example for an instance attribute definition

 ATTRIBUTE <Description>
 TYPE STRING
 VALUE ""

 FACET <MultiLineString>
 VALUE 1

 FACET <AttributeHelpText>
 VALUE ""

Keyword

Attribut name:
The name can use alphanumeric
characters

Value:
The concrete value will be
determined by the model.

Type definition

A help text can be provided for the
attribute.

This FACET defines if a text-box can
be used.

130 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Example of New Attribute in ADOxx

1. Select class 2. Right mouse click

3. Select „New Attribute“

4. Define Attribute

131 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Views of the class hierarchy
Classes
All visible classes will be shown
Relation classes
All available relation classes will be

shown
Metamodel
All classes will be shown
Class hierarchy
All classes will be shown with their

inheritance in a hierarchy
Attributes
The attributes of the (relation-)classes

will be shown
Attribute types
The type of each attribute will be

shown
Source- and Target-classes
Shows the endpoints for each relation

class, i.e. between which classes it
can be used.

IDs
Shows ID numbers of classes and

attributes

132 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Icons in ADOxx class hierarchy management

Class (the icon shows the graphical definition of the object and can
therefore vary)

Class (without a graphical definition)

Attribute

Attribute (inherited from another class)

Class attribute

Class attribute (inherited from another class)

133 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

4. ATTRIBUTE FACETS

134 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Facets Correlation

A
ttr

ib
ut

eN
um

er
ic

D

om
ai

n

A
ttr

ib
ut

eR
eg

ul
ar

Ex

pr
es

si
on

A
ttr

ib
ut

eI
nt

er
re

f
D

om
ai

n

En
um

er
at

io
n

D
om

ai
n

M
ul

tiL
in

eS
tr

in
g

A
ttr

ib
ut

eH
el

p
Te

xt

R
ec

or
dC

la
ss

N

am
e

R
ec

or
dC

la
ss

M

ul
tip

lic
ity

INTEGER X X
DOUBLE X X
STRING X X X
LONGSTRING X X X
TIME X
ENUMERATION X X X
ENUMERATIONLIST X X X
PROGRAMCALL X X
RECORD X X X
EXPRESSION X X
INTERREF X X

135 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Domain Definition 1
Definition

 Example

AttrDomainDef : DomainHead
{ DomainInterval }.
DomainHead : DOMAIN
message:"domainMessage".
DomainInterval : INTERVAL
lowerbound:lowerBoundValue
upperbound:upperBoundValue.

FACET <AttributeNumericDomain>
VALUE "LAYOUT decimals:2"

FACET <AttributeNumericDomain>
VALUE "DOMAIN
 message:\"Enter a value between 0.25 (quarter of an hour) and 20.\"
 INTERVAL
 lowerbound:0.25
 upperbound:20.0"

136 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Domain Definition 2
Example (cont.)

FACET <AttributeNumericDomain>
VALUE "DOMAIN
 message:"The valid Value Range of the Attribute lies between 0 and 100
 and between 1000 and 1100."
 INTERVAL
 lowerbound:0
 upperbound:100
 INTERVAL
 lowerbound:1000
 upperbound:1100 "

137 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Regular Expression Definition
Definition

 Example

RegExpDef : RegExpHead.
RegExpHead : REGEXP
message:"regExpMessage"
expression:"regularExpression".

FACET <AttributeRegularExpression>
VALUE "REGEXP
 message:\"Enter the time in the format MM.YYYY (Domain 01.1950 to 12.2050).\"
 expression:\"^(0[1-9]|1[0-2])\\.(19[5-9][0-9]|20[0-5][0-9])$\""

FACET <AttributeRegularExpression>
VALUE "REGEXP
 message:"That is not a valid e-mail address!"
 expression:".*@.*"
 "

FACET <AttributeRegularExpression>
VALUE "REGEXP
 message:"Input data in format 'DD.MM.YYYY'."
 expression:"^()$|^((((0[1-9]|1[0-9]|2[0-9]).(0[1-9]|10|11|12))|(30.(01|0[3-
9]|10|11|12))|(31.("
 "01|03|05|07|08|10|12))).[0-2][0-9][0-9][0-9]${10})"
 "

138 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

InterRef Domain Definition
Definition  Example
InterRfDomainDef: [DomainHead]
{ ModRefDomain } |
{ InstRefDomain }.
DomainHead : REFDOMAIN
[max:totalMaxValue].
ModRefDomain : MODREF
mt:"modelTypeName"
[max:maxValue].
InstRefDomain : OBJREF
mt:"modelTypeName"
c:"className"
[max:maxValue].

FACET <AttributeInterRefDomain>
VALUE "REFDOMAIN
 OBJREF
 mt:"My ModelType"
 c:"MyModelClass"
 max:1 "

FACET <AttributeInterRefDomain>
VALUE "REFDOMAIN max: 100
 OBJREF
 mt:"MyFirstModelType\"
 c:"MyClassInMyFirstModelType"
 max: 50
 OBJREF
 mt:"MySecondModelType"
 c:"MyClassInMySecondModelType"
 max: 50 "

FACET <AttributeInterRefDomain>
VALUE "REFDOMAIN max:1
 MODREF mt:\"Knowledge
Management Process Model\" "

139 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Enumeration Domain Definition
Definition

 Example

ITEM itemText [param:varName:defaultText] [fdlg-
filterX:filterExt fdlg-typeX:filterName]
AdoScript .

FACET <EnumerationDomain>
VALUE "value-1@value-2@value-3@value-n"

http://www/ado_html/leo352/attr.adoscript.html

140 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

MultiLineString Definition
Definition
The attribute-facet 'MultiLineString' (only for attributes of type STRING) specifies, whether the
text field for the string has a single line (VALUE 0) or several lines (VALUE 1).
The text field allows entering 3700 symbols maximum. In the attribute 'name' entering 255
symbols maximum is possible. A text field with more lines owns scroll-bars in the notebook and
can be enlarged to screen size 640x480 by an enlarging button.

FACET <MultiLineString>
VALUE 0

FACET <MultiLineString>
VALUE 1

Example

141 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Attribute Help Text Definition
Definition
The attribute-facet 'AttributeHelpText' defines an i-Button (on the right top of the text field),
where the info-text (defined in 'VALUE') is deposited.

FACET <AttributeHelpText>
VALUE "You can change the language from English to German and/or vice versa."

Example

142 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Example for Meta-Data

Attributes can be defined and provided with a descriptive default value.
They should not be provided in the „Notebook“ to prevent the user from
changing these, making them only accessible through processing.

ATTRIBUTE <Application>
TYPE STRING
VALUE "All objects of this aggregation belong together and must be considered
as a group by all functions. "

 FACET <MultiLineString>
 VALUE 1

 FACET <AttributeHelpText>
 VALUE "Enter a description for documentation purposes."

 FACET <AttributeRegularExpression>
 VALUE ""

142

143 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

4. ATTRIBUTE
FACETS

 HANDS-ON

144 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Facet Notebook in Attribute-Edit Mode

1. Select class 2.Right mouse click on an attribute
3. Select „Edit“

4. Define Facet

145 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

5. MODELTYPES

146 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Definition of Model Types

 Model types, model type-groups and views for model types:
 A model type determines a subset of all instantiable classes and relations. Each

model has a specific model type which can not be changed afterwards.
 Model type-groups should be defined, if the application library consists of many

different model types. This allows to group and structure the available model types.
 A modus is a further restriction of a model type. It defines a subset of the

assigned classes/relations and simplifies modeling by hiding not needed classes.
The modus of a model can be changed any time unlike the model type.

146

147 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Definition of Model Types
GENERAL order-of-classes: OrderOfClasses

Defines if the sequence of the classes in the modeling tool should be taken from
the meta model (<OrderOfClasses> = „default“) or is specified for each
model type explicitly („custom“).

METHOD graphrep: „attrName”

Introduces a method diagram.

GROUP „GroupName”

Defines a group of model types with the name <GroupName>.
graphrep: „attrName”

Defines a graphical representation for a method diagram. <attrName> specifies an
attribute which contains the representation using the ADOxx GraphRep
language.

147

148 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

GENERAL order-of-classes:custom
METHOD graphRep:"Method GraphRep"
{
 GROUP "Simulation"
 {
 MODELTYPE "My First Model Type"
 MODELTYPE "My Second Model Type"
 }
 GROUP "All modeltypes"
 {
 MODELTYPE "My First Model Type"
 MODELTYPE "My Second Model Type"
 MODELTYPE "My Third Model Type"
 MODELTYPE "My Forth Model Type"
 }
}

Modelling Stack with four model types, grouped into two model
type groups.

148

Definition of Model Types Sample

149 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Additional Commands to Define Model types
MODELTYPE „modelTypeName“ from MTSource

This command defines a model type <modelTypeName> and inherits all classes and
relations from the source <MTSource> (all, none or a different model type)

plural: „modelTypePluralName“

Defines the plural name of a model type.
bitmap: „fileName“

Defines a graphical symbol for the selection list (<fileName> = path and file name;
backslashes must be masked with an additional backslash, i.e. “\\”).

attrrep: „attrName“

Provides a Notebook (defined in the library as an attribute with the name <attrName>)
with model attributes for a model type.

INCL / EXCL

Adds (except for all)/removes (except for none) classes and relations to the
MODELTYPE.

pos / not-simulateable

Determines the position in list of model types / excludes the model type from simulation.
 149

150 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Example: Model type

MODELTYPE "My First Model Type"
 from:none
 plural:"My First Model Types"
 pos:1
 not-simulateable
 bitmap:"db:\\MyFirstModelType.bmp "
 attrrep:"Notebook for My First Model Type"
INCL "My Class 1"
INCL "My Class 2"
INCL "My Class 3"
INCL "has relationship 1"
INCL "has relationship 2"

151 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Commands to define Views on Model Types
MODE „modeName“ from: „modeSource“

This command defines a view modus with the name <modeName>. A list of
classes/relations must be specified (either absolute or relative as described
above) together with this command. MODE can be extended using several
parameters.

from: „modeSource“

Inherits all the classes and relations from the source <modeSource> (all, none
or a different mode). „all“ relates to the list from the model type (not the whole
metamodel).

no-modeling
The defined mode is not applicable for modeling and will not be shown in the menu

entry “Modi” of the modeling component.
no-documentation

The defined mode is not applicable for creating a documentation.
 151

152 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

MODELTYPE "My First Model Type" from:none plural: "My First
Model Types"
 pos:0 not-simulateable bitmap:"db:\\MyFirstModelType.bmp"
 attrrep: "Notebook of My First ModelType"
 INCL "My Class 1"
 INCL "My Class 2"
 INCL "My Class 3"
 INCL "has relationship 1"
 INCL "has relationship 2"
MODE "Standard" from:all
 EXCL "My Class 3"
 EXCL "has relationship 2"
MODE "Documentation" from:Standard no-modeling
 INCL "My Class 3"
 INCL "has relationship 2"

Example: Model type View

153 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

5. MODEL
TYPES

 HANDS-ON

154 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Definition of the ADOxx MODI Attribute

2. Select the Tab Add-Ons

1. Select Dynamic Tutorial
Library

3. Fill the „MODI“ Attribute

155 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

MODELLING LANGUAGE
IMPLEMENTATION ON ADOxx

SUMMARY

156 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*
is from - class

is to - class

1..1

1..1

0..*

0..*

1..*
0..*

0..*

0..*

0..*
0..*

1..1
1..1

has
1..* 1..1 1..* 0..*

0..1

1..n

Instanzattribut

Klasse Beziehungstyp

Metamodell

Klassenattribut Facette

Wertebereich

Modelltyp Sicht Entwurfsmuster

Attributprofil

...

regular
expression

... Attributfilter Graphische Dar -
stellung („ Notation “)

Attributtyp

Atomarer Typ
Zusammen -

gesetzter Typ
1..* 0..*

Attribut

Metamodell -
ausschnitt

0..*

1..1

1..1
0..* 1..*

-

1..1

1..1

0..*

0..*

1..*
0..*

0..*

0..*

0..*
0..*

1..1
1..1

1..* 1..1
has

1..* 0..*

1..n

instance attribute

class relation type

metamodel

class attribute facet

value range

modeltype view design pattern

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type
composed

type
1..* 0..*

attribute

metamodel
part

0..*

1..1

Meta Model of Meta Modelling Language

1

2

3

4

5

We thank you for your attention!

157 ADOxx® Training © BOC Group | boc@boc-group.com

In case of any questions, please contact

 tutorial@adoxx.org

	MODELLING LANGUAGE IMPLEMENTATION ON ADOxx
	What is ADOxx?
	Slide Number 3
	Meta Modelling Platforms Hierarchy: ADOxx
	Introduction of ADOxx:
	SETUP OF �IMPLEMENTATION ENVIRONMENT
	Individual Development Environment from ADOxx.org
	Laboratory Development Environment at OMiLAB
	DEVELOPMENT APPROACHES
	Administration Toolkit - STARTUP
	Development Toolkit - Components
	ADOxx Experimentation Library
	MODELLING LANGUAGE IMPLEMENTATION
	Modelling Language�Implementation
	Generic Modelling Method Framework
	Meta Model of Meta Modelling Language
	Meta Model of Meta Modelling Language
	1. CLASSES and RELATIONS
	Class Types in ADOxx I
	Class Types in ADOxx II
	Selected Pre-defined ADOxx classes for a "Graph-based environment " I
	Selected Pre-defined ADOxx classes for a "Graph-based environment " II
	Selected Pre-defined ADOxx classes for a "Graph-based environment " III
	Selected Pre-defined ADOxx classes for a "Graph-based environment" IV
	Selected Pre-defined ADOxx classes for a "Graph-based environment" V
	Inheritance/Dependencies of ADOxx Dynamic Metamodel
	Selected Pre-defined ADOxx classes for a "Tree-based environment"
	Inheritance/Dependencies of ADOxx Static Metamodel
	Realisation of Meta Model
	Definition of a Modeling Class
	1. CLASSES and RELATIONS�HANDS-ON
	Modification of class hierarchy �of dynamic library�
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	1. CLASSES and RELATIONS
	Definition: Relation
	Relation Types
	Relation Types: Inheritance of Relation Class
	Relation Types: Inheritance of InterRef
	Realisation of Meta Model
	1. CLASSES and RELATIONS�HANDS-ON
	Definition of Relation Class
	2. CLASS ATTRIBUTE & ATTRIBUTE
	Definitions: Data Object Model 1
	Definitions: Data Object Model 2
	Basic: Definition of Attributes
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Basics: Selected Special Attributes
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Basics: Graphical Notation of Classes
	GRAPHREP I
	GRAPHREP II
	GRAPHREP III
	GRAPHREP IV
	Some GraphRep-Commands (1)
	Some GraphRep-Commands (2)
	Some GraphRep-Commands (3)
	The GraphRep Coordinate Plane
	GraphRep Structural Commands
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	GraphRep Example Workflow
	GraphRep Example Workflow
	Commented GraphRep Code
	GraphRep Example Workflow
	GraphRep Example Workflow
	Commented GraphRep Code: H
	GraphRep Example Workflow
	GraphRep Example Workflow
	Commented GraphRep Code: X
	Commented GraphRep: hRi (uni-directional)
	Commented GraphRep: bi-directional example
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	GraphRep Examples
	GraphRep Examples
	GraphRep Examples
	GraphRep Examples
	GraphRep Examples:
	GraphRep Examples:�
	GraphRep Examples:
	GraphRep Examples:
	GraphRep Examples:�
	GraphRep Examples: �
	GraphRep Examples: �
	GraphRep Definition for Relation Classes
	GraphRep Example:
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Basics: AttrRep
	The AttrRep-Commands
	ATTRREP
	AttrRep Syntax Reference
	Example for a AttrRep Definition in ALL
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Example Workflow AttrRep
	Commented AttrRep Code
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Class Attribute “Class cardinality”
	Commands of the Class Cardinality
	Parameters of the Class Cardinality
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Class cardinality: Examples
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Class Attribute „__Conversion__“
	Commands and Parameters for Conversion
	The commands and parameters for the conversion
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Conversion example:�
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	The class attribute “Model pointer“
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Model pointer: Example
	3. CLASS ATTRIBUTE & ATTRIBUTE
	Basics: Definition of Attributes
	Attribute Types and their Appearance
	Attribute Types and their appearance
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Attribute Definition
	3. CLASS ATTRIBUTE �& ATTRIBUTE
	Example for an instance attribute definition
	Example of New Attribute in ADOxx
	Views of the class hierarchy
	Icons in ADOxx class hierarchy management
	4. ATTRIBUTE FACETS
	Attribute Facets Correlation
	Attribute Domain Definition 1
	Attribute Domain Definition 2
	Regular Expression Definition
	InterRef Domain Definition
	Enumeration Domain Definition
	MultiLineString Definition
	Attribute Help Text Definition
	Example for Meta-Data
	4. ATTRIBUTE �FACETS�
	Facet Notebook in Attribute-Edit Mode
	5. MODELTYPES
	Definition of Model Types
	Definition of Model Types
	Definition of Model Types Sample
	Additional Commands to Define Model types
	Example: Model type
	Commands to define Views on Model Types
	Example: Model type View
	5. MODEL �TYPES�
	Definition of the ADOxx MODI Attribute
	MODELLING LANGUAGE IMPLEMENTATION ON ADOxx
	Meta Model of Meta Modelling Language
	Slide Number 157

