
Simulation with ADOxx

Simulation with ADOxx 1 / 69

Simulation Introduction

Real-World Process → Simulation

Simulation is the reproduction of a real-process (e.g. business-
process) over time. For simulating you have to create a model which
represents your process and its characteristics. The model describes
the system itself, where the simulation describes the operation of the
system over time.

Simulation with ADOxx 2 / 69

Simulation with ADOxx

The aim is to

model,

study, and

analysis

the behavior of a complex and dynamic system.

Simulation with ADOxx 3 / 69

Algorithms

ADOxx provides the following predefined simulation algorithms:

1 Path Analysis:

2 Capacity Analysis:

3 Workload Analysis:

I stationary,
I non-stationary

Simulation with ADOxx 4 / 69

Algorithms

Path Analysis (straight forward)
I Simulation without working environment conditions

F Expected values of cost and time
F Critical Paths

Capacity Analysis
I Simulation with the assignment of activities to ’processors’

F Evaluation of human requirement
F Activity and process costs under personal cost condition

Workload Analysis
I Simulation on a time axis by daily calendar and time

F Activity and process costs under personnel cost condition
F Capacity plan with process and personnel calendar

Simulation with ADOxx 5 / 69

Inputs and Outputs

Path Analysis
I Input: Process time and waiting time
I Output: Weighted path results, mean values

Capacity Analysis
I Input: Quantity (global/time cycle), processor assignment
I Output: Global capacity calculation, process costs

Workload Analysis
I Input: Amounts per day, attendance time
I Output: dynamically evaluated capacity curve

Simulation with ADOxx 6 / 69

General Modeling Conditions

∀ models: ∃! Startpoint S

∀ models: ∃ Endpoints Ei

∀ paths P from S to Ei : P is connected

Matching Condition:
Let D be a decision node. ∀ edges ei where D is ancestor∑

P(ei) = 1.

Simulation with ADOxx 7 / 69

Matching Condition & Variable Assignment

The above defined matching condition can be executed by the so called
variable assignment. For this purpose, you can choose one of four
different random variable distributions.

Discrete
I Variable name
I Probability

Normal
I Expectation
I Standard deviation

Exponential
I Expectation

Uniform
I Lower bound
I Upper bound

Simulation with ADOxx 8 / 69

Excursion: Probability

Definition

A Probability space is a triple (Ω, F , P), where

1 Ω is the set of all possible outcomes or sample space.
2 F is a subset of Ω which satisfies the following three properties.

I ∅ ∈ F
I A ∈ F → Ac ∈ F
I A1,A2,A3, ... ∈ F →

⋃∞
i=1 Ai ∈ F

3 P is the probability for each event A, where P fulfills the following
three axioms.

I ∀A : P(A) ≥ 0
I P(Ω) = 1
I If A1,A2, ... is a sequence of pairwise disjoint events, then

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai)

Simulation with ADOxx 9 / 69

Excursion: Probability

Definition

Let (Ω, F , P) be a probability space and X : Ω→ Ω′ feasible. We call X
as a Ω′ valued random variable.

Definition

Let Ω′ = R. The map F : R→ [0, 1] which is defined by F (t) = P(X ≤ t)
is called distribution function of the random variable X .

Definition

A random variable X is called continuous, if there exists an integrable
function f : R→ R+, so that P(X ≤ t) =

∫ t
∞ f (x)d(x) ∀t ∈ R. We say

f is the probability density function of X .

Simulation with ADOxx 10 / 69

Discrete Distribution

Definition

A random variable X is called discrete, if the number of its values are
finite or countably many. For i ∈ R we define w(i) = P(X = i), where R
is the domain of X .

i

w(i)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Simulation with ADOxx 11 / 69

Application: Installation Code Generation Process

The Installation Code Process of ADOxx is a
well-defined procedure which can be modeled like
on the right hand-side.
The first decision is, if the request is accepted or
not. This decision is assigned to a random
variable, which is discretely distributed with

P(X=Yes) = 0.9 P(X=No) = 0.1.

Simulation with ADOxx 12 / 69

Normal Distribution

Definition

Let µ ∈ R and σ > 0. A random variable X with the domain R and the
probability density

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2

is called normal distributed or N(µ, σ)−distributed.

x

f(x)

µ
µ− σ µ+ σ

Simulation with ADOxx 13 / 69

Application: Outlier Tests

The so called maximum normed residual test is a statistical test used to
detect outliers in a univariate data set assumed to come from a normally
distributed population. There are three kinds of outlier tests:

(i) One sided outlier
I High outlier
I Low outlier

(ii) Two sided outlier: high and low

x

P(x)

Simulation with ADOxx 14 / 69

Application: Two Sided Outlier Model

In a physical experiment the outcomes are
normally distributed with mean value µ and the
standard deviation σ.
The values X < µ− δ and X > µ+ ε are
outliers.

Condition:
If the probability P(µ− δ ≤ X ≤ µ+ ε) < 45%
then the experiment and so the thesis has
failed.

Simulation with ADOxx 15 / 69

Exponential Distribution

Definition

Let λ > 0 and R+ be the support of a continuous random variable X . We
call X exponential distributed or if its probability density function is

f (x) =

{
λe−λx x ∈ R+

0 else.

Therefore the distribution function is

F (x) =

{
1− e−λx x ∈ R+

0 else.

Simulation with ADOxx 16 / 69

Exponential Distribution

x

f(
x)

/
F

(x
)

Distribution function

Density function

Figure : Exponential Distribution

Simulation with ADOxx 17 / 69

Application: Call Center Simulation

A very common example for the exponential distribution is the call center
simulation. In call center models we can define the income process with
the exponential-function. The time between two calls in the call center is
exponential distributed.

For example let λ = 0, 4 (→ µ = 2, 5). The probability that between two
calls elapse 2 min is therefore

P(X ≤ 2) = 1− e−0,4∗2 = 0, 5507

Simulation with ADOxx 18 / 69

Application: Lifecycle

The probability of failure of an electronic
component is exponential distributed where its
expected durability is about 10 years. If the
component does not work within 2 years any
more the producer has to refund it because of
the guarantee conditions.

Simulation with ADOxx 19 / 69

Uniform Distribution

The uniform distribution is a distribution, that has constant probability.
The density function is defined by

P(x) =

{
1

b−a x ∈ [a, b]

0 else.

x

f(
x)

a b

1
b−a

Simulation with ADOxx 20 / 69

Uniform Distribution: Application

Suppose that an insurance company sells a
product that from an amount insured of EUR
100.000.− they have to support an additional
activity. The product has an insurance volume
between EUR 10.000.− and 500.000 amount
insured. The sum of all the insurance contracts
are distributed uniformly in this interval.

Simulation with ADOxx 21 / 69

Path Analysis

Simulation with ADOxx 22 / 69

Path Analysis

Simulation with ADOxx 23 / 69

Path Analysis

2. Order outputs by criteria you want

1. Select number of Simulations

Simulation with ADOxx 24 / 69

Results

Select any path you want
and click ”OK” to display
information of it. The
selected path will be
marked on your model.

The simulation results can
be

I saved and
I printed.

Simulation with ADOxx 25 / 69

Capacity Analysis

Simulation with ADOxx 26 / 69

Working Environment

Create a working environment model

Simulation with ADOxx 27 / 69

Capacity Analysis

Open Notebook of the bp start-object

Go to chapter ’Simulation Data’

Insert the simulation amount per
I year,
I month, or
I day.

Simulation with ADOxx 28 / 69

Capacity Analysis

Go to Capacity Analysis

Create a new application library
consisting of:

I at least one business process
model and

I exactly one working environment
model.

Simulation with ADOxx 29 / 69

Capacity Analysis

Select:

Application Model

Numbers
I Number of Simulations
I Working days per year
I Hours per working day

Settings

Passive components
I Path analysis
I Computation
I Deterministic simulation
I Log file

Simulation with ADOxx 30 / 69

Results

Select criteria after that the results should be ordered.

Simulation Results
I Process related
I Person related
I Working environment*
I Capacity planning

*Working Environment
I Class
I Relation

Related to
I Per year
I Per month
I Per process

Simulation with ADOxx 31 / 69

Results

The simulation results can be

saved,

printed,

displayed as diagrams,
and

compared.

Simulation with ADOxx 32 / 69

Workload Analysis
(Steady State)

Simulation with ADOxx 33 / 69

Working Environment

Create a working environment model

Simulation with ADOxx 34 / 69

Worload Analysis: Process Calendar

Define process calendar of the bp-start
instance:

1 Go to ’Day profiles’

2 Add Day profiles

3 Add assign time interval to the day
profile

4 Define time interval
I Uniform distributed

(Process is triggered e.g. every 5
minutes)

I Exponential distributed
(The probability between two process
starts is exponential distributed)

1

2

3

4

Simulation with ADOxx 35 / 69

Worload Analysis

Select:

Application Model

Numbers
I Number of Simulations
I Steady state calculation
I Simulation start

Settings

Passive components
I Activity analysis
I Computation
I Animation
I Deterministic simulation
I Log file

Simulation with ADOxx 36 / 69

Results

Select criteria after that the results should be ordered.

Simulation Results
I Process related
I Person related
I Working environment*

*Working Environment
I Class
I Relation

Related to
I Per year
I Per month
I Per process

Simulation with ADOxx 37 / 69

Results

The simulation results can be

saved,

printed,

displayed as diagrams,
and

compared.

Simulation with ADOxx 38 / 69

Workload Analysis
(Fixed Time Period)

Simulation with ADOxx 39 / 69

Worload Analysis

Select:

Application Model

Numbers
I Simulation start
I Calculation
I Calculation end

Settings

Passive components
I Activity analysis
I Computation
I Animation
I Deterministic simulation
I Log file

Simulation with ADOxx 40 / 69

Results

Select criteria after that the results should be ordered.

Simulation Results
I Process related
I Person related
I Working environment*

*Working Environment
I Class
I Relation

Related to
I Evaluation period
I Per process

Simulation with ADOxx 41 / 69

Results

The simulation results can be

saved,

printed,

displayed as diagrams,
and

compared.

Simulation with ADOxx 42 / 69

How to Realize Simulation in ADOxx

The standard parameters for the simulation algorithms need to be
configured according to the classes defined in the dynamic and the static
library to be simulated.

1 Path Analysis:
simulates a dynamic model alone.

2 Capacity Analysis:
simulates a dynamic model & the corresponding static model(s)

3 Workload Analysis:
simulates a dynamic model & the corresponding static model(s)

Simulation with ADOxx 43 / 69

How to Realize Simulation in ADOxx

Modeling Language Definition
In order to perform simulation at first we need a dynamic model with the
following classes:

A class that will represent the initial point of the model, derived from the abstract
class Start

A class that will represent the final point of the model, derived from D end

One or more classes that will represend the active objects of the model, derived
from Activity

A class that will represent the points of decision in the model, derived from
Decision

A class that will define the variables in the model derived from D variable

A class that will define the random generator derived from D random generator

The “Subsequent“, “Sets variable“, and “Sets“relation, already defined in the
ADOxx metamodel, for connecting the objects or defining random generators.

Simulation with ADOxx 44 / 69

How to Realize Simulation in ADOxx

For the workload- and the capacity analysis we have also to define a
working environment in the static library with the following classes:

“Performer“derived from S person

“Organizational unit“derived from S group

“Role“derived from S group

and relation classes:

“Belongs to“: <Performer> → <Organizational unit>

“Is manager“:<Performer> → <Organizational unit>

“Has role“:<Performer> → <Role>

“has Cross-reference“:< S-construct > → < S-construct >

Simulation with ADOxx 45 / 69

How to Realize Simulation in ADOxx

Dynamic Library
In the dynamic library we have to change the following library attributes
(available in the Simulation tab):

”Simtext” contains some user-specific expressions used by ADOxx to
label simulation results

”Simmapping” contains the definition of the input sets for the
Simulation and a group of classes which are then used in
simulation-related Actions.

”Sim result mapping” defines which simulation results are written
back into which attributes of a model when you click on the
”Evaluation” button.

Static Library
In the static library we have to adapt the ”Sim result mapping”-attribute.

Simulation with ADOxx 46 / 69

How to Realize Simulation in ADOxx

SIMTEXT:

Simtext is used in all four algorithms for labeling of simulation results.

SYNTAX:

Simtext: SIMTEXT undefined 1 | Settings

Settings: bp: ”term for <business process>”
cycletime: ”term for <cycle time>”
activity: ”term for <activity>”
number: ”term for <number (count)>”
actor: ”term for <person>”
perscost: ”term for <personnel costs>”
resource: ”term for <resource>”
rescost: ”term for <resource costs>”

1“undefined“causes the Simtext to be ignored.
Simulation with ADOxx 47 / 69

How to Realize Simulation in ADOxx

Simmapping:
Simtext allows the definition of input sets for the simulation and for the analytic
evaluation.
Additionally it specifies a set of classes which is used for simulation related
actions.
SYNTAX
SimOption :
SIMOPTION [invalid] name: ”option name”

activity: ”name of activity-class”
[executiontime: ”attribute name of execution time”]
[waitingtime: ”attribute name of waiting time”]
[restingtime: ”attribute name of resting time”]
[transporttime: ”attribute name of transport time”]
[userattribute-1: ”additional attribute name 1”]
...
[PerformerAssignment (for Subprocesses)]
{SimActions}

Simulation with ADOxx 48 / 69

How to Realize Simulation in ADOxx

PerformerAssignment (for Subprocesses):
processcall: ”class name of subprocess call”
subperformerattr: ”attribute name of default performer assignment for

subprocesses”
SimActions :

ACTION
class: ”class name”
attribute: ”attribute name”
[event: start | interrupt | continue | finish]

SimClasses:
SIMCLASSES
bp-all | bp-none
[bp-1: ”bp class name”
...
bp-n: ”bp class name”]
we-all | we-none
[we-1: ”we class name”
...
we-n: ”we class name”]

Simulation with ADOxx 49 / 69

How to Realize Simulation in ADOxx

Sim result mapping (dynamic):
The attribute ”Sim result mapping” defines which simulation results are
written back into which attributes of a model within the evaluation.

PROCESSSTART ”Process Start”
fixedinfo:”Info on results”
fixedcycletime:”Aggregated cycle time”
fixedpersonalcosts:”Aggregated personnel

costs”
FROMCLASS ”Activity”

fromattribute:”Costs”
resultatatribute:”Aggregated costs”

...

ACTIVITY ”Activity”
fixedinfo:”Info on results”
fixednumber:”Number”
fixedpersonalcosts:”Aggregated personnel

costs”
...

PROCESSSTART is a keyword used for assigning the
name of the class that represents the starting point
of the model that you want to simulate.

FROMCLASS is a keyword used for selecting
additional classes (FromClassname) and specify
values from the fromattribute attribute values
(FromAttributename) specified. The selected
attributes of this class can be transferred back
through toattribute into the respective attribute
(ToAttributename).

ACTIVITY is a keyword used for assigning the name
of the main class used in the model.

.

Simulation with ADOxx 50 / 69

How to Realize Simulation in ADOxx

Sim result mapping (static):

The parameters of the static library attributes has also to be defined by
editing the following into the ”Sim result mapping” attribute:

[PERSON ”Name of person class”
[fixedinfo:”Name of info attribute”]
[fixedworkload:”Name of workload attribute”]
[fixedcapacity:”Name of capacity attribute”]
[fixedpersonalcosts:”Name of personalcosts attribute”]

{ FROMCLASS ”Name of fromclass”
fromattribute:”Name of fromattribute”
toattribute:”Name of toattribute” }]

Simulation with ADOxx 51 / 69

Simulation with ADOxx
HANDS-ON

HANDS-ON 52 / 69

HANDS-On: Create Dynamic Classes

Open the ”Class hierarchy” for the
Dynamic library.

Activate the ”Metamodel” view then
”class hierarchy”

Create the following classes
1 ”Process Start” derived from

Start
2 ”Activity” derived from Activity
3 ”Decision” derived from Decision
4 ”Variable” derived from Variable
5 ”Random Generator” derived from

Random generator
6 ”End” derived from D end

HANDS-ON 53 / 69

HANDS-On: Create Static Classes

Open the ”Class hierarchy” for the
Static library.

Activate the ”Metamodel” view then
”class hierarchy”

Create the following classes
1 ”Performer” derived from

” S Person ”
2 ”Organizational unit” derived from

” S Group ”
3 ”Role” derived from ” S Group ”

HANDS-ON 54 / 69

HANDS-On: Create Relation Classes

Open the ”Class hierarchy” for the
Static library.

Create the following relation classes
1 “Belongs to“: <Performer> →
<Organizational unit>

2 “Is manager“:<Performer> →
<Organizational unit>

3 “Has role“:<Performer> → <Role>
4 “has Cross-reference“:
< S-construct > →
< S-construct >

HANDS-ON 55 / 69

Define Dynamic Model Type

Open dynamic-library attributes

Select Add-ons

Go to Modi and define:

MODELTYPE ”Simulation Process”
INCL ”Process Start”
INCL ”Subprocess”
INCL ”Activity”
INCL ”Decision”
INCL ”End”
INCL ”Variable”
INCL ”Random Generator”

INCL ”Subsequent”
INCL ”Sets variable”
INCL ”Sets”
INCL ”Call parameter”

HANDS-ON 56 / 69

Define Static Model Type

Open static-library attributes

Select Add-ons

Go to Modi and define:

MODELTYPE ”Working environment model”
from:none plural:”Working environment
models”
INCL ”Organizational unit”
INCL ”Performer”
INCL ”Role”

INCL ”Belongs to”
INCL ”Is manager”
INCL ”Has role”
INCL ”has Cross-reference”

HANDS-ON 57 / 69

”Process Start”-Class

Open the ”Class hierarchy” for the
dynamic library.

Select ”Process Start”

Create Attribute:
I ”Info on results” of type String

Define Notebook:

NOTEBOOK
CHAPTER ”Description”
ATTR ”Name”
CHAPTER ”Simulation data”
GROUP ”Capacity analysis”
ATTR ”Quantity”
ATTR ”Time period” ctrltype:radio
ENDGROUP
GROUP ”Workload analysis”
ATTR ”Process calendar” dialog:processstart-calendar
ATTR ”Tolerance waiting time”
ATTR ”Abandon after tolerance waiting time” ctrltype:check
checked-value:”yes” unchecked-value:”no”
ENDGROUP

HANDS-ON 58 / 69

”Activity”-Class

Open the ”Class hierarchy” for the
dynamic library.

Select ”Activity”

Create Attribute:
I ”Costs” of type Floating Number
I ”Number” of type Floating Number

Define Notebook:

NOTEBOOK
CHAPTER ”Description”
ATTR ”Name”
CHAPTER ”Times/Costs”
GROUP ”Activity times”
ATTR ”Execution time”
ATTR ”Waiting time”
ATTR ”Resting time”
ATTR ”Transport time”
GROUP ”Acitvity costs”
ATTR ”Costs”
CHAPTER ”Working environment”
ATTR ”Performer” dialog:actor lines:3
ATTR ”Task stack”
ATTR ”Done by”

HANDS-ON 59 / 69

”Variable”-Class

Open the ”Class hierarchy” for the
dynamic library.

Select ”Variable”

Define Notebook:
NOTEBOOK
CHAPTER ”Description”
ATTR ”Name”
ATTR ”Variable type”
ATTR ”Variable scope”

HANDS-ON 60 / 69

”Random Generator”-Class

Open the ”Class hierarchy” for the
dynamic library.

Select ”Random Generator”

Define Notebook:
NOTEBOOK
CHAPTER ”Description”
ATTR ”Name”
ATTR ”Value” dialog:distribution

HANDS-ON 61 / 69

”Performer”-Class

Open the ”Class hierarchy” for the
static library.

Select ”Performer”

Create Attributes of type DOUBLE:
I ”Capacity”
I ”Info on results”
I ”Personnel costs”
I ”Workload”

Define Notebook:
NOTEBOOK
CHAPTER ”Description”
ATTR ”Name”
ATTR ”Hourly wages”
ATTR ”Personnel costs”
ATTR ”Availability”
ATTR ”Calendar” dialog:person-calendar
CHAPTER ”Simulation results”
ATTR ”Personnel costs” write-protected
ATTR ”Capacity” write-protected
ATTR ”Workload” write-protected
ATTR ”Info on results” write-protected lines:5

HANDS-ON 62 / 69

”Performer”-Class GraphRep

Open the ”Class hierarchy” for the
static library.

Select ”Performer”

Define GraphRep2:

GRAPHREP
SHADOW off
AVAL col:”fontcolor”
AVAL set-default:”no” mono:”Monochrome view”
IF (mono = ”yes”)
SET bMono:1
ELSE
SET bMono:0
ENDIF
IF (bMono)
SET color peru:(rgbval(”white”))
SET col:(rgbval(”black”))
ELSE
SET color peru:(rgbval(”peru”))
ENDIF
...

2
You can download the GraphRep-code from the adoxx.org GrapRep repository:

http://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-/wiki/GRAPHREP+Repository/FrontPage

HANDS-ON 63 / 69

”Role”-Class GraphRep

Open the ”Class hierarchy” for the
static library.

Select ”Role”

Define GraphRep3:
GRAPHREP
SHADOW off
AVAL col:”fontcolor”
AVAL set-default:”no” mono:”Monochrome view”
IF (mono = ”yes”)
SET bMono:1
ELSE
SET bMono:0
ENDIF
IF (bMono)
SET color lightskyblue:(rgbval(”white”))
SET col:(rgbval(”black”))
FILL color:(color lightskyblue)
ELSE
SET color lightskyblue:”lightskyblue”
SHADOW off
CLIP ELLIPSE rx:.78cm ry:.68cm GRADIENT RECT
x:-.75cm y:-0.75cm w:1.5cm h:1.5cm style:downdiag
color1:(rgbval (color lightskyblue, 1.4)) color2:(rgbval
(color lightskyblue, 0.7))
...

3
See: RoleGraphRep.leo

HANDS-ON 64 / 69

Dynamic Library Attribute ”Simtext”

Open dynamic-library attributes

Select Simulation

Go to Simtext and define:
SIMTEXT
bp: ”Simulation Process”
cycletime: ”Cycle time”
activity: ”Activity”
number: ”Number”
actor: ”Performer”
perscost: ”Personnel costs”
resource: ”Resource”
rescost: ”Resource costs”

HANDS-ON 65 / 69

Dynamic Library Attribute ”Simmapping”

Open dynamic-library attributes

Select Simulation

Go to Simmaping and define:
SIMOPTION
name: ”Default”
activity: ”Activity”
executiontime: ”Execution time”
waitingtime: ”Waiting time”
restingtime: ”Resting time”
transporttime: ”Transport time”
userattribute-1: ”Costs”
SIMCLASSES
bp-all
we-1: ”Performer”
we-2: ”Organizational unit”
we-3: ”Role”
processcall: ”Subprocess” subperformerattr:”Performer”

HANDS-ON 66 / 69

Static Library Attribute ”Sim result mapping”

Open static-library attributes

Select Simulation

Go to ”Sim result mapping” and
define:

PERSON ”Performer”
fixedinfo:”Info on results”
fixedworkload:”Capacity”
fixedcapacity:”Workload”
fixedpersonalcosts:”Personnel costs”

HANDS-ON 67 / 69

Thank you for your Attention

HANDS-ON 68 / 69

HANDS-ON 69 / 69

