
MODELLING LANGUAGE
IMPLEMENTATION ON ADOxx

ADOxx® Training

1ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

IMPLEMENTATION ON ADOxx

What is ADOxx?

“ADOxx IS A META MODELLING
DEVELOPMENT AND

CONFIGURATION PLATFORM FOR

2ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

CONFIGURATION PLATFORM FOR
IMPLEMENTING MODELLING

TOOLS.”

MM-tool User

Modelling Domain
Knowledge

Domain Knowledge
Method Knowledge

Identified Roles Major Tasks Required Skills Cases

E
st

ab
lis

h
ed

m

o
d

el
lin

g
 to

o
ls

A
g

ile
 d

ev
el

o
p

m
en

t o
f

m
o

d
el

lin
g

 to
o

l i
n

p

ar
al

le
l t

o
 m

o
d

el
lin

g
 to

o
l u

sa
g

e

A
g

ile
 d

ev
el

o
p

m
en

t o
f A

D
O

xx
 p

la
tf

o
rm

 in

p
ar

al
le

l t
o

 m
o

d
el

lin
g

 m
et

h
o

d
 d

ev
el

o
p

m
en

t

. . .

3ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ADOxx Developer

MM-Tool Developer

Developing an Meta
Modelling Tool

Implementation of tool
specific and ADOxx

functionality

Domain Knowledge
Method Knowledge
Platform Knowledge

Platform Knowledge
ADOxx Technology

Skills

A
g

ile
 d

ev
el

o
p

m
en

t o
f

m
o

d
el

lin
g

 to
o

l i
n

p

ar
al

le
l t

o
 m

o
d

el
lin

g
 to

o
l u

sa
g

e

A
g

ile
 d

ev
el

o
p

m
en

t o
f A

D
O

xx
 p

la
tf

o
rm

 in

p
ar

al
le

l t
o

 m
o

d
el

lin
g

 m
et

h
o

d
 d

ev
el

o
p

m
en

t

developed

in

Meta Modell

Instance of

ADOxx Developer

C++

developed

by

developed

by

MM – Tool
Development
PartADOxx

Meta Model

ADOxx
Meta2 Model

Meta Modelling Platforms Hierarchy: ADOxx

4ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Inherited from

MM-Tool Developer

ALL

ADLcreated

by

developed

by

Model
described

in

developed

in
Method-specific

Meta Model

Instance of

MM-tool User

MM … Modelling Method

Introduction of ADOxx:

Definition: Model types, Classes, Attributes and Relations

 Model Types:

5ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Model Types:
A model type is a well-defined sub collection of classes and relation classes of a meta model.

 Classes:
A class is a construct that is used as a template to create objects of that class. The objects of a
class are alternatively called "instances"

 Attributes:
An attribute is a property of a modelling construct such as a model, object or relation. Each
attribute has a type and a value.

 Relations:
A relation class is a construct that is used as a template to create relations between objects. A
relation class is defined between classes. A relation is always a directed connection between
objects, i.e. each relation has a from-side and a to-side.

SETUP OF

6ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

SETUP OF
IMPLEMENTATION ENVIRONMENT

Individual Environment

Individual Development Environment from ADOxx.org

ADOxx Development

MM-Specific Tool

supports development supports usage

User Interaction Tool

7ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ADOxx Framework

Experimentation
Platform

„Project“
Platform

ADOxx Development
Environment

publishes

can be downloaded

User Interaction Tool
ADOxx Kernel

can be downloaded

OM - Environment

Laboratory Development Environment at OMILab

Development

MM-Specific Tool

supports development supports usage

User Interaction Tool

8ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ADOxx Framework

Experimentation
Platform

„Project“
Platform

Development
Environment

publishes

is provided into

User Interaction Tool
ADOxx Kernel

DEVELOPMENT APPROACHES

Configuration and Implementation Approach

Configuration Approach

ADOxx
Configuration Tools

Class Hierarchy
Management

Graphrep
Notation Editor

AttrRep
Notation Editor

Modeltype/View
Configuration

Library
Validation

External
coupling

9ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Metamodel
Engineer

Implementation Approach

Configuration Tools

ADOxx Library Language
Implementation Tools

ABL

Library Configuration/
Implementation

Management Notation Editor Notation Editor Configuration Validation coupling

Syntax Highlight
AutoComplete

Supporting Development
Services

Administration Toolkit - STARTUP

1. Start Administration Toolkit

2. Login into Administration Toolkit

3. Default Development User

4. Username: Admin

5. Password: password
DB: adoxxdb

10ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

6. BACKGROUND: connection to
experimentation database hosted on a server
platform

Development Toolkit - Components

Debug User needed in the
database to start modelling
toolkit for validation
U: debug
P: debug
Create user in “User
Management” component for
testing purposes

11ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Development Environment:
Library Management
Component

testing purposes

ADOxx Experimentation Library

 Development aggregated in “Application Library” consisting of Static and
Dynamic sub-library

 Dynamic: ADOxx 1.5 Dynamic Experimentation Library

 Static: ADOxx 1.5 Static Experimentation Library

12ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

MODELLING LANGUAGE

13ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

MODELLING LANGUAGE
IMPLEMENTATION

Modelling Language
Implementation

Modeling
Procedure

Modeling
Method

Modeling
technique Mechanisms

& Algorithms
Modeling
Language

Implicit
ADOxx support

ADOxx
Mechanisms & Algorithms

ADOxx Meta Model

14ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

MM … Modelling Method
Reference: Kühn, H. (2004). Methodenintegration im Business Engineering. PhD Thesis, University of Vienna

Modelling Method Implementation based on ADOxx

MM-Specific
Inheritance of

ADOxx Meta Model

Indirect support of
procedure

MM-Specific
Configuration & Scripting

of ADOxx + Add-Ons

Inheritance Configuration & Scripting

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert
it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

definesmeaning
Modelling
Language
modelling
language

definesvisualization
definesway of languageapplication

deliversmodeling
procedure

modelling
technique

modelling
method

mechanisms
& algorithms

usedfor

usedin

generic
mechanisms
& algorithms

Generic Modelling Method Framework

15ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

The image cannot be displayed. Your computer may not have enough
memory to open the image, or the image may have been corrupted.
Restart your computer, and then open the file again. If the red x still
appears, you may have to delete the image and then insert it again.

arranges
accordingto

definesgrammar

Semantics

Semantic
Schema

Syntax

Semantic
Mapping

connects
considers

Notation semantics

semantic
domain

syntaxnotation visualizes

semantic
mapping

describes
meaningof

results

& algorithms

hybrid
mechanisms
& algorithms

specific
mechanisms
& algorithms

steps
(designlogic)

Reference: Karagiannis, D., Kühn, H.: „Metamodelling Platforms“. In Bauknecht, K., Min Tjoa, A., Quirchmayer, G. (Eds.):
Proceedings of the Third International Conference EC-Web 2002 – Dexa 2002, Aix-en-Provence, France, September 2002,
LNCS 2455, Springer, Berlin/Heidelberg, p. 182 ff.

Meta Model of Meta Modelling Language

0..*

0..1

1..n

Instanzattribut

Klassenattribut Facette

Wertebereich

Attributprofil

...

regular
expression

... Attributfilter
Graphische Dar -

stellung („ Notation “)

Attributtyp

Atomarer Typ
Zusammen -

gesetzter Typ

1..*0..*

Attribut
0..*

1..n

instance attribute

class attribute facet

value range

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type
composed

type

1..*0..*

attribute

16ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*
is from - class

is to - class

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

has

1..* 1..1 1..* 0..*

Klasse Beziehungstyp

Metamodell

ModelltypSicht Entwurfsmuster

expression

Metamodell -
ausschnitt

0..*

1..1

1..1
0..*

1..*

-

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

1..* 1..1

has

1..* 0..*

class relation type

metamodel

modeltypeview design pattern

metamodel
part

0..*

1..1

0..*

0..1

1..n

Instanzattribut

Klassenattribut Facette

Wertebereich

Attributprofil

...

regular
expression

... Attributfilter
Graphische Dar -

stellung („ Notation “)

Attributtyp

Atomarer Typ
Zusammen -

gesetzter Typ

1..*0..*

Attribut
0..*

1..n

instance attribute

class attribute facet

value range

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type
composed

type

1..*0..*

attribute

Meta Model of Meta Modelling Language

2

3

4

17ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*
is from - class

is to - class

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

has

1..* 1..1 1..* 0..*

Klasse Beziehungstyp

Metamodell

ModelltypSicht Entwurfsmuster

expression

Metamodell -
ausschnitt

0..*

1..1

1..1
0..*

1..*

-

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

1..* 1..1

has

1..* 0..*

class relation type

metamodel

modeltypeview design pattern

metamodel
part

0..*

1..1

1

4

5

18ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS

Class Types in ADOxx I

 Pre-defined Abstract Classes (ADOxx meta model class)

19ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Pre-defined Abstract Classes (ADOxx meta model class)
 Pre-defined abstract classes are classes that are provided by ADOxx with a given semantic and basic

syntax in form of attributes. They can be used to inherit the pre-defined syntax and the attributes to either
self-defined abstract classes or to classes.

 ADOxx functionality that is provided for the pre-defined abstract classes can be used for any inherited
concrete class. Hence pre-defined and provided ADOxx functionality is consumed due to inheritance of
such pre-defined abstract classes.

 Pre-defined abstract classes are the ADOxx meta model, hence they exist in every meta model based on
ADOxx.

 Nomenclature: __ Class Name __

Class Types in ADOxx II

 Abstract Classes
 Abstract classes are self-defined classes enabling to structure the meta model and define syntax in form

of attributes and semantic, which is inherited by sub-classes.

 Abstract classes either inherit from the root class of the meta model, or from any other class of the meta
model. Hence, they inherit the behaviour from their super-class – which is often a pre-defined abstract
class from the ADOxx meta model.

 Abstract classes enable an efficient meta model, hence they may not be in every ADOxx meta model.

 Nomenclature: _ Class Name _

20ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Nomenclature: _ Class Name _

 (Concrete) Classes
 Classes are self-defined classes defining a concrete modelling class that can be used, when applying the

corresponding modelling language. Hence all model objects in every model created on ADOxx is an
instance of a class.

 Classes inherit the semantic and the attributes from the Pre-defined abstract class and additionally - in
case of inheriting - from the abstract class.

 Classes enable the realisation of a concrete meta model.

 Nomencladure: Class Name

Selected Pre-defined ADOxx classes for a "Graph-based environment " I

 __ D_Construct ___
 Super class for „graph-based“ pre-defined meta model.

 __ D_Container __
 Container class provide the relation „is-inside“, hence every object a drawn on the model having its x/y

coordinates within the drawing area of any container b has the relation a Ris-inside b.

 __D_aggregation__
 Aggregation inherits from __D_Container__, hence also provides the „is-inside“ relation and enables a

21ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Aggregation inherits from __D_Container__, hence also provides the „is-inside“ relation and enables a
self-defined „drawing area“. E.g. resizeable rectangel.

 __D_swimmlane__
 Swimmlane inherits form __D_Container__, hence also provides the „is-inside“ relation but only enables

either rows (x=0 to x= maximum) or colums (y= 0 to y= maxium) as possible „drawing area“. E.g. three
colums one for input, one for processing, one for output

Selected Pre-defined ADOxx classes for a "Graph-based environment " II

 __ D_Event ___
 Event encapsolates all possible notes of a graph and distinguishes between

“D_variable_assignment_object” and “D_end”.

 __ D_end __
 The end concludes the graph and finishes state changes.

 __D_variable_assignment_objects__
 Variable assignment objects enable the change of the state. The state is stored in variables, hence each

22ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Variable assignment objects enable the change of the state. The state is stored in variables, hence each
of the following concepts have the potential to change the status of variables within a graph:

 Neutral element, start, subgraph, activity, decision, parallelity, merging

 __D_Neutral element__
 Neutral elements do not participate in executing the graph but only display references or state the status.

 __D_Start__
 Start is the starting node of the graph.

Selected Pre-defined ADOxx classes for a "Graph-based environment " III

 __ Subgraph ___
 Subgraph substitutes a sub-graph in the graph to make complex graphs more readable. Technically the

subgraph is a pointer to another graph.

 __ Activity__
 Activity is a node in the graph that performs the typical actions the graph is designed for. Activities are

transforming input into output.

 __Decisions__

23ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 __Decisions__
 Decisions split the graph in several alternative paths.

 __Parallelity__
 Parallelity starts a synchronized path of a graph.

 __Merging__
 Merging ends a synchronized path of a graph.

Selected Pre-defined ADOxx classes for a "Graph-based environment" IV

Sample Graph

O Xa1

a2

a3

a4

a5

a6

a7XOR AND

24ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Possible mapping of graph to ADOxx meta model

O Xa1

a2

a3

a4

a6

a7

__Start__
__Activity__

XOR

__Decision__

AND () AND

__Parallelity__ __Merge__

__End__

a5

Selected Pre-defined ADOxx classes for a "Graph-based environment" V

 __ D_variable ___
 Variables are objects that store a certain status of the graph. Hence different variables can be defined,

describing different aspects of a graph.

 __ D_random_generator __
 Random generator creates random figures that can be assigned to variables. This is used for simulation.

 __D_resources__
 Resources are properties of graph-nodes represented in an own class hierarchy. Hence descriptive

25ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Resources are properties of graph-nodes represented in an own class hierarchy. Hence descriptive
properties need not only be defined as attributes of graph nodes but can be described as classes using
class hierarchy from resources.

ADOxx D-Meta Model

Inheritance/Dependencies of ADOxx Dynamic Metamodel

__D_container__

__D_Construct__

__D_aggregation__

__D_event__ __D_variable__ __D_random generator__

__LibraryMetaData__

__D_end____D_variable_assignment_object__

__D_agent__ __D_resource__

__D_swimmlane__

26ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

I
H

G

__ Neutral element __ __ Decision __ __ Parallelity __ __ Merging __

Sample – Meta Model

Inheritance of a sample
meta model

X

__ Activity __

A B W

__ Start __

DC

E
E

V

X … as a container class
G … as an abstract class
H … as a modelling class
I … as a flow class

__ Subgraph __

Included in tutorial library

To be implemented in
tutorial

Selected Pre-defined ADOxx classes for a "Tree-based environment"

 __ S_Construct ___
 Super class for „hierarchy” pre-defined meta model.

 __S_Group__
 Group is a tree node

 __ S_Container __, __S_aggregation__, __S_swimmlane__
 Is a special form of a tree-node, same as in __D_Container__

 __S_resource__

27ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 __S_resource__
 Resources are properties of tree-nodes represented in an own class hierarchy. Hence descriptive

properties need not only be defined as attributes of tree nodes but can be described as classes using
class hierarchy from resources.

 __S_person__
 In case persons are represented a special class is reserved for implementing person depending

behaviour (privacy etc.).

ADOxx S-Meta Model

Inheritance/Dependencies of ADOxx Static Metamodel

__S_container__

__S_Construct__

__S_aggregation__ __S_swimmlane__

__D_agent____S_group__ __S_person__ __S_resource__

28ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

28

S
Z

Sample – Meta Model

Inheritance of a sample
meta model

Y

T Result-of-Count

Included in tutorial library

To be implemented in
tutorial

S … as a resource class
Y … as a container class
H … as a modelling class
Z … as a class derived from T

Realisation of Meta Model

Specification of a meta model in ALL

1. Specify the meta model starting from the „Empty Meta Model“ and add classes etc. with ALL
using a text editor. Abstract class is defined by the classattribute isabstract.

2. Translate ALL into the ADOxx interpretable ABL format and import the meta model into
ADOxx.

class : class-definition { attribute } |
redefclass-definition { redefattribute } .

class-definition : CLASS identifier ':' identifier .

29ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

classattribute-definition : CLASSATTRIBUTE identifier TYPE typeidentifier |
CLASSATTRIBUTE identifier TYPE typeidentifier VALUE val |
CLASSATTRIBUTE identifier VALUE val |
CLASSATTRIBUTE identifier TYPE RECORD .

Definition of a Modeling Class

//====================================
CLASS <Aggregation> : <__D_aggregation__>
//====================================

Class name

Predefined abstract
classes to be inherited

Keyword

30ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

//====================================

//--- Class <Aggregation> - Class attributes-

//--- Class <Aggregation> - Instance attributes-

classes to be inherited
from

comments

31ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS
HANDS-ON

Modification of class hierarchy
of dynamic library

32ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Add a new abstract class below the
root element that is used to define
“_G_” related issues

1. Select root class, click “New” ->
“New class”

2. Name new class as an abstract
class
Naming convention: start and
end with “_”

33ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

end with “_”

Make class abstract using
“ClassAbstract“ attribute
-> Effect: class can not be
instantiated in the modelling
tool

34ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Add a new concrete class below
the abstract element that is
used to define a concrete
class

Select the abstract class,
click “New” -> “New
class”

Name new class

The new created class can be
identified on instance level
by the “Name” attribute.

35ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

by the “Name” attribute.
This attribute is
automatically/implict
available for each class

Add a new concrete class below
the __D_event__ element that is
used to define a flow class

Select “__D_event__”
class, click “New” ->
“New class”

Name new class

The new created class can be
identified on instance level
by the “Name” attribute.

36ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

by the “Name” attribute.
This attribute is
automatically/implict
available for each class

Add a new concrete class below the
__D_aggregation__ element that is
used to define Grouping

Select “__D_aggregation__
”class, click “New” -> “New
class”

Name new class

The new created class can be
identified on instance level by the

37ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

identified on instance level by the
“Name” attribute. This attribute is
automatically/implict available for
each class

38ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS

Definition: Relation

A BRAB

Attribute

Attribute

Attribute

Relationship between objects are defined as relationtypes
between classes. Relations are defined by their source and

target class, their cardinality, and their attributes.

39ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Source and Target Class:

Any class – Pre-defined abstract class, abstract class or class – can act as source
class defining where the relation starts from, as well as target class defining where
the relations ends.

Cardinality:

Cardinality like 1:1, 1:n and n:m relationship is defined in the cardinality of the
relation.

Attributes:

Attributes are descriptive properties of relations and handled like attribute for
classes.

Relation Types
Relations in ADOxx are expressed either as a class “Relation Class” or as a pointer
in form of an attribute called “InterRef”.
Relation as Class “RC”

• describes relationship between two objects from two or more classes within one model.

• has start and endpoints define which (abstract) classes a relation can connect

• Cardinality and attribute defined the semantic of the relations class

Relation as Attribute “InterRef”

• Is a special configuration of a Relation Class and describes the relationship between two objects
from two or more classes within or across models.

• Is a pointer represented as an attributed in the class the relation starts from, with defined classes

40ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

• Is a pointer represented as an attributed in the class the relation starts from, with defined classes
the relation can point to.

• Cardinality defines the semantic of the InterRef

b
(B)

a
(A)

Model

B
(B)

A
(A)

FROM TO

Metamodel

Instance of conformsTo Instance ofconformsTo

Instance of

rab

RCAB

FROM TO

Relation Types: Inheritance of Relation Class

B
(B)A (A)

FROM TO

Metamodel

conformsTo

RCAB

A‘ B‘

subclass of subclass of

41ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

b‘(B‘)a‘ (A‘)

Model
instance of

conformsTo

instance of

conformsTo

rab

FROM TO

instance of

Relation Types: Inheritance of InterRef

B
(B)

A
TO

Metamodel

A‘ B‘

subclass of subclass of

InterRefAB

(B)
InterRefAB

Inherits attribute

42ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

b‘a‘

Model

instance of

instance of

A‘ B‘(B)

TO

(B)

TO

InterRefAB

conformsTo

Realisation of Meta Model

Specification of a meta model in ALL

1. Specify the meta model starting from the „Empty Meta Model“ and add relation classes and
interrefs to classes etc. with ALL using a text editor.

2. Translate ALL into the ADOxx interpretable ABL format and import the meta model into
ADOxx.

relationclass : relationclass-definition { instanceattribute } |
redefrelationclass-definition { redefinstanceattribute } .

relationclass-definition : RELATIONCLASS identifier FROM identifier TO identifier .

instanceattribute-definition : ATTRIBUTE identifier TYPE typeidentifier |
ATTRIBUTE identifier TYPE typeidentifier VALUE val |

43ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ATTRIBUTE identifier TYPE typeidentifier VALUE val |
ATTRIBUTE identifier VALUE val |
ATTRIBUTE identifier TYPE RECORD .

instanceattribute-setting : ATTRIBUTE identifier VALUE val .

typeidentifier : INTEGER |
DOUBLE |

INTERREF |

EXPRESSION |

. . .

1. CLASSES and RELATIONS

44ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS
HANDS-ON

Definition of Relation Class

Add a new relation class to
connect classes

Click “New” -> “New relation
class”

Name new relation class

Define from-class

Define to-class

45ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

2. CLASS ATTRIBUTE &

46ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

2. CLASS ATTRIBUTE &
ATTRIBUTE

Definitions: Data Object Model 1

• A Facet has exactly three properties: a name, a type and a value. Every one of these three
properties is saved in one slot. Possible facet types are STRING, INTEGER and DOUBLE.

• Attributes define certain properties of classes or relationclasses. Every attribute consists of at
least three facets: a namefacet (name: "Name", type: STRING, value: "..."), a type facet
(name: "Type", type: INTEGER, value: [STRING, INTEGER, DOUBLE, LONGSTRING,
DISTRIBUTION, EXPRESSION, TIME, ENUMERATION, ENUMERATIONLIST,
PROGRAMCALL, INTERREF, RECORD, PROFILEREFERENCE]) and one valuefacet
(name: "Value", type: [STRING, INTEGER, DOUBLE, RECORD], value: "...").

47ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

(name: "Value", type: [STRING, INTEGER, DOUBLE, RECORD], value: "...").

• Every attribute has an additional facet called "AttributeHelpText" which contains user help.
Depending on the type of the attribute, additional facets may be defined.

• Attributes can be either class or instance attributes. Class attributes receive one value for
every class. Instance attributes receive one value of each instance or relation.

• A Class derived from another class is called subclass and inherits all attributes that are
defined in the class from which it is derived. A class from which other classes are derived is
called superclass. Relationclasses (or just relations) can not be inherited. Relations are
always defined between exactly two classes: one source and one target class.

Definitions: Data Object Model 2

Every object is identified by a unique id. The following chart
shows the relations between different objects, used to define
concepts like class, relation, instance, attribute ...

48ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Basic: Definition of Attributes

Attributes for classes and relation classes have to be defined in the definition
section of the class/relation class with 'TYPE'.

The following attribute types are possible:

• INTEGER integer

• DOUBLE floating number

• STRING string – max. 3699 symbols

• LONGSTRING string – max. 32000 symbols

• TIME time

49ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

• DATE date

• DATETIME date and time

• ENUMERATION enumeration for selecting a characteristic

• ENUMERATIONLIST enumeration for selecting one or several characteristics

• DISTRIBUTION statistical distribution

• PROGRAMCALL enumeration for selecting a program

• RECORD a table of attributes

• EXPRESSION a formula

• INTERREF reference on a model or an instance

• ATTRPROFREF a preset set of attribuite values

2. SPECIAL CLASS ATTRIBUTE

50ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

Basics: Selected Special Attributes

The following class attributes can be customized:

AttrRep*: Notebook-Definition (all classes)

GraphRep*: Graphical representation (object- and relation classes)

Model pointer*: Relations to other models (object classes)

51ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Class cardinality*: Relation constraints (object classes)

__Conversion__X: Conversion from one object to another

*are class attributes from Root Class (D|S_Construct) hence inherited by each class
X any class can define this class attribute

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

52ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

GRAPHREP

Basics: Graphical Notation of Classes

Static Notation:

 Semiotic Clarity

 Perceptual Discriminability

 Semantic Transparency

 Complexity Management

 Cognitive Integration

 Visual Expressiveness

 Dual Coding

53ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Dual Coding

 Graphic Economy

 Cognitive Fitness

Dynamic Notation:

 Event based changes of notations (e.g. attribute change)

Reference

GRAPHREP I

 Class attribute GRAPHREP is of type long string, hence the attribute value is a text that is
interpreted as a script by the GRAPHREP interpreter.

 The following types of elements are distinguished:
 Style elements

 Shape elements

 Variable assigning elements

 Context elements

 Control elements

 The representation characteristic for following shape elements is modified by style elements:
 PEN sets the characteristics of the outline pen for shape elements.

 FILL sets the characteristics of the fill-in brush for shape elements.

54ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 FILL sets the characteristics of the fill-in brush for shape elements.

 SHADOW switches the additional shadow of shape elements on or off

 STRETCH switches geometric stretching on or off

 FONT sets the font for displayed texts and attribute values.

 PEN determines in which manner the lines and curves are drawn, i.e. how strong, in which color
and in which style (e.g. dashed line). For shape elements which can be filled, only the outline of
the shape is influenced by the current pen. The filling of shapes is controlled by the current fill-in
brush, which can be set with BRUSH.

 Shape elements which can not be filled are POINT, LINE, POLYLINE, ARC and CURVE. Fillable
elements are RECTANGLE, POLYGON, ELLIPSE, PIE and COMPOUND.

 For shape elements coordinates (positions) have to be specified. Coordinates here are relative to
the position of the particular object, i.e. they are added to the object's position.

GRAPHREP II

 Context elements just exist for relations. They specify whether the starting, the middle or the
endpoint of the relation is being defined. Keyword "START" defines that the following
description refers to the start point of the relation until the next context element
START/MIDDLE/END is specified. A fourth context element (EDGE) triggers the drawing of
a relation's edge. This is the line from the starting point via possible bendpoints to the end
point of a relation.

55ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 For relations the starting, the middle and the end (point) can be defined. Positions then refer
to one of these three points. However, the coordinate system is rotated depending on the
direction of the relation instance. On defining a relation's GraphRep, you have to regard the
relation as going horizontally from the left to the right. The coordinate system's origin then is
the point of the relation for which the graphical representation currently is being defined, i.e.
start, middle or end point.

GRAPHREP III

 On the x-axis the coordinate values increase from the left to the right, on the y-
axis they increase from top to bottom (differing from mathematics). Arcs and
pies are rotated counter-clockwise.

 ATTENTION: The unit of measure for positions and proportions (cm or pt) has to
be specified in every case. Pixel values cannot be used.

 On the drawing of an object, the elements are processed sequentially. However,
the control elements make it possible to skip sections during the element
processing depending on variables. For example, attribute values of the object
to be represented may be assigned to such variables. A graphical
representation depending on object attributes can thus be obtained using

56ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

representation depending on object attributes can thus be obtained using
variable assignment elements combined with control elements. Additional
possibilities are given from using variables in graphical elements.

GRAPHREP IV

Graph Elements

57ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

For detailed explanation see online support for each of the elements

Some GraphRep-Commands (1)

GRAPHREP

 The GraphRep definition must start with this command to be valid. The
parameter layer defines whether an object will be displayed above or below
other objects. The parameter sizing specifies if the size can be changed.

SHADOW

 Specifies if the class will have a shadow or if it should be drawn “flat”.

58ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

PEN

 Defines the pens width/color/style.

FILL

 Defines the fill color/style and transparency.

ATTR

 Shows an attribute value on the drawing area (e.g. object name).

Some GraphRep-Commands (2)

POINT

 Draws a point.

LINE / POLYLINE

 Draws a single line (LINE) or several lines (POLYLINE).

CURVE / ARC

 Draws a curve according to a mathematical function or an arc.

POLYGON

59ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Draws a polygon consisting of several straight lines where each corner is defined as a single point.

RECTANGLE / ROUNDRECT / ELLIPSE / PIE

 A rectangle, rectangle with rounded edges, an ellipse or a segment of an ellipse.

COMPOUND

 A composite filled Form (from LINE, POLYLINE und CURVE-Elements).

Some GraphRep-Commands (3)

TEXT

 Allows to show a specific text on the drawing area (Letters, Symbols …).

FONT

 Defines the font style/color for drawn text.

BITMAP

 Allows to embed a picture (*.BMP-Format).

60ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Allows to embed a picture (*.BMP-Format).

TABLE

 Creates a table for structuring the attribute representation of an object.

Hint:Hint:
Graphical elements can be combined for more complex drawing!

The GraphRep Coordinate Plane

A coordinate plane is used to provide an exact positioning of the GraphRep elements. It is
composed of:

The null coordinate is in the middle

Positive values go to the right and down

Negative values go to the left and up

61ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Hint:Hint:
 It is required to specify the Unit (cm or pt). Units in pixels are not possible.
 The direction of rotation progresses counter-clockwise!

GraphRep Structural Commands

SET

Sets a variable with a constant or the result of an expression, which in turn can
contain variables.

AVAL

Sets variables with the values from an attribute of the instantiated object.

IF / ELSIF / ELSE / ENDIF

Allows to change the representation based on values.

62ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Allows to change the representation based on values.

BITMAPINFO

Reads the height and width of a bitmap file, allowing to properly represent it.

TEXTBOX / ATTRBOX

Similar to TEXT and ATTR. However instead of drawing the values it sets specific
variables with the rectangle area they would need.

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

63ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

GRAPHREP
HANDS-ON

POLYGON with 7
corners

x1:1.5cm
y1:0cm

x2:0.5cm
y2:-1cm

x3:0.5cm
y3:-0.5cm

x4:-1.5cm
y4:-0.5cm

NEGATIVE POSITIVE

NEGATIVE

GraphRep Example Workflow

GRAPHREP Preparation for Class “I”

64ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

corners y1:0cm

x5:-1.5cm
y5:0.5cm

x6:0.5cm
y6:0.5cm

x7:0.5cm
y7:1cm

POSITIVE

OBJECT NAME

GraphRep Example Workflow

GRAPHREP Implementation for Class
“I”

1. Since this class is concrete, a
graphical representation needs to be
defined.

2. Use inherited class attribute
“GraphRep” to define the graphical
representation

3. Write GRAPHREP code to provide a
notation for the class

65ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Commented GraphRep Code

Class: I

GRAPHREP

FILL color:royalblue

POLYGON 7 x1:1.5cm y1:0cm x2:0.5cm

y2:-1cm x3:0.5cm y3:-0.5cm x4:-1.5cm

y4:-0.5cm x5:-1.5cm y5:0.5cm

x6:0.5cm y6:0.5cm x7:0.5cm y7:1cm

ATTR "Name" y:1.4cm w:c h:c
In case attribute name is
available, it is shown here

66ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ATTR "Name" y:1.4cm w:c h:c available, it is shown here

NEGATIVE POSITIVE

NEGATIVE

x:1.5cm
y:0cm

x:-1.5cm
y:0cm

x:0cm
y:-1cm

GraphRep Example Workflow

GRAPHREP Preparation for Class
“H”

67ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

POSITIVE

OBJECT NAME

y:0cm y:0cm

x:0cm
y:1cm

GraphRep Example Workflow

GRAPHREP Implementation for Class
“H”

1. Since this class is concrete, a
graphical representation needs to be
defined.

2. Use inherited class attribute
“GraphRep” to define the graphical
representation

3. Write GRAPHREP code to provide a
notation for the class

68ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Commented GraphRep Code: H
GRAPHREP

#Container Rectangle

RECTANGLE x:-1.5cm y:-0.5cm w:3cm h:1cm

#Arrow Lines

PEN style:dash

LINE x1:-0.8cm x2:0.8cm y1:-0.2cm y2:-0.2cm

LINE x1:-0.8cm x2:0.8cm y1:0.2cm y2:0.2cm

#Arrow Ends

PEN style:solid

LINE x1:-0.8cm x2:-0.6cm y1:-0.2cm y2:-0.1cm
LINE x1:-0.8cm x2:-0.6cm y1:-0.2cm y2:-0.3cm
LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.1cm

LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.3cm

69ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.3cm

#Right actor

ELLIPSE x:1.1cm y:-0.2cm rx:0.15cm ry:0.15cm
LINE x1:1.1cm x2:1.1cm y1:-0.05cm y2:0.2cm

LINE x1:1.1cm x2:0.95cm y1:0.2cm y2:.3cm

LINE x1:1.1cm x2:1.25cm y1:0.2cm y2:.3cm

LINE x1:0.95cm x2:1.25cm

#Left actor

ELLIPSE x:-1.1cm y:-0.2cm rx:0.15cm ry:0.15cm
LINE x1:-1.1cm x2:-1.1cm y1:-0.05cm y2:0.2cm
LINE x1:-1.1cm x2:-0.95cm y1:0.2cm y2:.3cm

LINE x1:-1.1cm x2:-1.25cm y1:0.2cm y2:.3cm

LINE x1:-0.95cm x2:-1.25cm

#Attribute Representation

ATTR "Name" y:0.8cm w:c h:c

In case attribute name is
available, it is shown

here

NEGATIVE POSITIVE

NEGATIVE

x:2.5cm
y:0cm

x:-2.5cm
y:0cm

x:2.5cm
y:0cm

RESIZEABLERESIZEABLE

SHOW BACKGROUND IMAGE

GraphRep Example Workflow

GRAPHREP Preparation for Class
“X”

70ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

POSITIVE

y:0cm y:0cm

x:0cm
y:2.5cm

RESIZEABLERESIZEABLE

SHOW BACKGROUND IMAGE

ITALIC = FUNCTIONALITY

GraphRep Example Workflow

GRAPHREP Implementation for Class “X”
1. Since this class is concrete, a

graphical representation needs to be
defined.

2. Use inherited class attribute
“GraphRep” to define the graphical
representation

3. Write GRAPHREP code to provide a
notation for the class

71ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Commented GraphRep Code: X

GRAPHREP sizing:asymmetrical
PEN style:dash
AVAL set-default:"" a:"External graphic"
#handling of programmcall attribute - cut out
the filename
SET e:(LEN a)
SET s:(search(a,"@",0) + 1)
SET grfk:(copy (a, s, e - s))
SET s:((LEN grfk) - 4)
SET e:((LEN grfk))
SET ext:(copy (grfk, s, e))
SET ext:(lower(ext))
TABLE w:5cm h:5cm cols:1 rows:1

RESIZE

FILE HANDLING

72ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

TABLE w:5cm h:5cm cols:1 rows:1

RECTANGLE w:(tabw1) h:(tabh1)

IF ((ext=".bmp") OR (ext=".gif")OR(ext=".ico")
OR (ext=".jpg") OR (ext=".jpeg") OR
(ext=".png") OR (ext=".targa") OR (ext=".tiff")
OR (ext=".wbmp") OR (ext=".xpm"))

BITMAP (grfk) w:(tabw1) h:(tabh1)
ENDIF

FILE HANDLING

IMAGE HANDLING

Commented GraphRep: hRi (uni-directional)

GRAPHREP rounded:0.05cm

SHADOW mode:off

PEN color:red w:0.02cm color:$727272

EDGE

END

FILL color:red

POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
x3:-0.2cm y3:-0.11cm

GRPHREP OF EDGE

GRAPHREP END

73ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Commented GraphRep: bi-directional example

GRAPHREP rounded:0.05cm

SHADOW mode:off

PEN color:red w:0.02cmcolor:$727272

style:dash

START

FILL color:red

POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm

x3:-0.2cm y3:-0.11cm
GRAPHREP START

74ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

x3:-0.2cm y3:-0.11cm

EDGE

END

FILL color:red

POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm

x3:-0.2cm y3:-0.11cm

GRPHREP OF EDGE

GRAPHREP END

GRAPHREP START

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

75ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

GRAPHREP
EXAMPLES

GRAPHREP
SHADOW off

FILL color:blue
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GraphRep Examples

Basic Forms

76ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

GRAPHREP

FILL color:blue
POLYGON 3 x1:-1cm y1:1cm x2:0cm
y2:-1cm x3:1cm y3:1cm

ATTR "Name" x:0cm y:1cm w:c

GRAPHREP

FILL color:blue
POLYGON 3 x1:-1cm y1:1cm x2:0cm y2:-1cm x3:1cm
y3:1cm
FILL color:yellow
POLYGON 3 x1:-0.6cm y1:0.6cm x2:0cm y2:-0.6cm
x3:0.6cm y3:0.6cm

ATTR "Name" x:0cm y:1cm w:c

GraphRep Examples

Combined Elements 1

77ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ATTR "Name" x:0cm y:1cm w:c

GRAPHREP
SHADOW off

FILL color:blue
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GRAPHREP
SHADOW off

FILL color:blue

PEN style:solid w:0.01cm
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm
PEN style:solid w:0.1cm
POLYGON 3 x1:-0.8cm y1:0.6cm x2:0cm y2:-1cm x3:0.8cm

GraphRep Examples

Combined Elements 2

78ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

POLYGON 3 x1:-0.8cm y1:0.6cm x2:0cm y2:-1cm x3:0.8cm
y3:0.6cm

FILL color:yellow
PEN style:solid w:0.01cm
ELLIPSE x:0.00cm y:0cm rx:0.5cm ry:0.5cm
PEN style:solid w:0.1cm
POLYGON 3 x1:-0.4cm y1:0.3cm x2:0cm y2:-0.4cm x3:0.4cm
y3:0.3cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GRAPHREP
SHADOW off

AVAL set-default: 2 ar:"number of counts"

TEXT (ar)

FILL color:lightgray
ELLIPSE x:0.0cm y:0cm rx:(CM (ar)) ry:(CM (ar))

1

2

GraphRep Examples

Conditional representation - Sizing

79ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

3

ELLIPSE x:0.0cm y:0cm rx:(CM (ar)) ry:(CM (ar))

ATTR "number of counts" x:0.0cm y:-0.05cm w:c

ATTR "Name" x:0.00cm y:1.0cm w:c

GraphRep Examples:

Basic forms

GRAPHREP
PEN w:0.05cm
FILL color:yellow
POLYGON 3 x1:-.7cm y1:.7cm x2:.7cm y2:.7cm x3:0cm y3:-.7cm
ATTR "Name" y:.8cm w:c:2.8cm h:t

GRAPHREP
PEN w:0.05cm

80ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

PEN w:0.05cm
FILL color:dodgerblue
RECTANGLE x:-1.4cm y:-.7cm w:2.8cm h:1.4cm
ATTR "Name" y:.8cm w:c h:t

GRAPHREP
FILL color:mediumspringgreen
ELLIPSE rx:0.70cm ry:0.70cm
ATTR "Name" y:0.8cm w:c:1.4cm h:t
FONT "Arial" h:32pt color:black
TEXT "V" y:0.13cm w:c h:c

GraphRep Examples:

Conditional representation (1)

GRAPHREP
AVAL col:"fontcolor"
AVAL set-default:"x" p:"referenced process"
AVAL sub:"referenced process "
AVAL i:"Sequence"
AVAL sn:"subprocessname"
FILL color:dodgerblue
PEN w:0.05cm
POLYGON 3 x1:-.7cm y1:.7cm x2:.7cm y2:.7cm x3:0cm y3:-.7cm
SHADOW mode:off
IF (NOT LEN p)

81ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

IF (NOT LEN p)
PEN style:dot

ENDIF
LINE x1:-.4cm y1:.5cm x2:.4cm y2:.5cm
LINE x1:.1cm y1:.4cm x2:.4cm y2:.5cm
LINE x1:.1cm y1:.6cm x2:.4cm y2:.5cm
FONT color:(col)
IF (sub = "")
ATTR "Name" y:.8cm w:c:2.8cm h:t

ELSE
FONT "Arial" h:8pt bold
ATTR "referenced process" y:(texty2 + .1cm) w:c:2.8cm h:t format:"%m"
FONT

ENDIF

Process call with /
without

a reference

GraphRep Examples:

Conditional representation (2)

GRAPHREP
AVAL set-default:"Modeling finished" b:"Status"
SHADOW off
FILL style:null
POLYGON 4 x1:-1.54cm y1:0.92cm x2:1.54cm y2:0.92cm

x3:1.54cm y3:-0.98cm x4:-1.54cm y4:-0.98cm
LINE x1:-1.54cm y1:-0.50cm x2:1.54cm y2:-0.50cm

Condition
fulfilled

82ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

LINE x1:-1.54cm y1:-0.50cm x2:1.54cm y2:-0.50cm
IF (b = "Modeling not finished")
LINE x1:1.25cm y1:-1.5cm x2:1.25cm y2:-1.3cm
LINE x1:1.25cm y1:-1.22cm x2:1.25cm y2:-1.18cm
PEN color:red
POLYGON 3 x1:1cm y1:-1.1cm x2:1.25cm y2:-1.6cm

x3:1.50cm y3:-1.1cm
ENDIF

Condition not
fulfilled

fulfilled

GraphRep Examples:

Tables

GRAPHREP sizing:asymmetrical
SHADOW off
PEN color:black
FILL style:null
TABLE x:-3.5cm y:-2cm w:7cm h:4cm

cols:3 rows:4

83ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

cols:3 rows:4
w1:1.3cm w2:50% w3:50%
h1:1cm h2:0.5cm h3:0.5cm h4:100%

Table with 4 rows and 3 columns

Hint:Hint:
When manually changing the size of the table only the parameters having values
specified as percent will change in size. Fields with absolute values will always stay the same.

GraphRep Examples:

Table borders

Tables can be drawn with or without borders. Borders are defined as lines using the corners of
the tables cells.

For instance: the top left corner of the table has the coordinate (tabx0, taby0), the top right
corner of the first cell has (tabx1, taby0) etc.

LINE x1:(tabx0) y1:(taby0) x2:(tabx3) y2:(taby0)
LINE x1:(tabx0) y1:(taby1) x2:(tabx3) y2:(taby1)

84ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

LINE x1:(tabx0) y1:(taby1) x2:(tabx3) y2:(taby1)
LINE x1:(tabx0) y1:(taby2) x2:(tabx3) y2:(taby2)
LINE x1:(tabx0) y1:(taby3) x2:(tabx3) y2:(taby3)
LINE x1:(tabx0) y1:(taby4) x2:(tabx3) y2:(taby4)

LINE x1:(tabx0) y1:(taby0) x2:(tabx0) y2:(taby4)
LINE x1:(tabx1) y1:(taby1) x2:(tabx1) y2:(taby3)
LINE x1:(tabx2) y1:(taby2) x2:(tabx2) y2:(taby3)
LINE x1:(tabx3) y1:(taby0) x2:(tabx3) y2:(taby4) Table with 4 rows and 3 columns

only some lines are arranged

GraphRep Examples:

Complex, attribute dependend representations

GRAPHREP
AVAL a:"External Documentation"
PEN w:0.1cm
FILL r:200 g:200 b:200
POLYGON 4 x1:0cm y1:-1cm x2:1cm y2:0cm

x3:0cm y3:1cm x4:-1cm y4:0cm
ATTR "Name" y:1.2cm w:c:2.8cm h:t
IF (search(lower(a),"winword",0) >= 0)

85ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

IF (search(lower(a),"winword",0) >= 0)
PEN w:0.07cm
FILL r:0 g:255 b:255
...

IF (search(lower(a),".doc",0) >=0)
...

ENDIF
ELSIF (search(lower(a),"powerpnt",0) >= 0)
...

ENDIF

Search for
Text pattern

Nested conditions

GraphRep Examples:

Compound representation

GRAPHREP
COMPOUND 2
LINE x1:1.0cm y1:-.7cm x2:-1.0cm y2:-.7cm
CURVE "t" f:(t) g:(-.2*sin(3.14*(t+1))+.7) from:-1 to:1

Start/EndpointLinie

86ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Verschachtelte BedingungenHint:Hint:
 The compound consists of one line and one curve.
 The endpoint of the previous element is the start point for the following.
 A connection is made automatically between to elements if necessary. (sequence is important!).

Curve

GraphRep Definition for Relation Classes

 The same commands from normal classes can be used for relation classes as well. In
addition the following keywords are available:

 EDGE

 Defines the representation of the relation edge (line).

 START / MIDDLE / END

 This command defines the representation of the important edge parts. If MIDDLE is defined, then the
middle of the edge can be moved in the model.

87ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

middle of the edge can be moved in the model.

START END

EDGE

no MIDDLE defined

GraphRep Example:

Connector

GRAPHREP
PEN color:lightblue w:.08cm
EDGE start-trans:-.3cm end-trans:-.3cm
START
POLYLINE 4 x1:0cm y1:0cm x2:-.1cm y2:.18cm

x3:-.2cm y3:-.18cm x4:-.3cm y4:0cm
END
POLYLINE 3 x1:-.4cm y1:.15cm x2:0cm y2:0cm

x3:-.4cm y3:-.15cm

A

88ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

x3:-.4cm y3:-.15cm

GRAPHREP
START
FILL color:black
ELLIPSE x:-.1cm rx:.1cm ry:.1cm
END
LINE x1:-.3cm y1:.1cm x2:0cm y2:0cm
LINE x1:-.3cm y1:-.1cm x2:0cm y2:0cm

B

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

89ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

ATTRREP

Basics: AttrRep

 The class attribute „AttrRep“ controls the availability and structure of the
ADOxx-Notebook. If it has no value then the class will have no Notebook.

 The following elements are available to define the Notebook:

 Chapter: Each Notebook must have at least one chapter to show some
attributes. Chapters of a Notebook are shown as tabs on the right side.

90ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Attributes: Attributes are embedded in a chapter where they should be shown.
The distribution and sequence of the attributes is also defined in the AttrRep.

 Groups: Attributes can be combined to groups inside of a chapter.

The AttrRep-Commands

NOTEBOOK

The Notebook-Definition must start with this command to be valid. It has no parameters.

CHAPTER „chapterName“

Chapters can be started with this command. The chapter will have the name <chapterName> (Hint:
A command ENDCHAPTER is not necessary)

ATTRIBUTE „AttrName“

The attribute with the name <AttrName> will be shown in the notebook on this position. Some
attribute types also allow different parameters to adapt the actual display.

GROUP „groupName“ / ENDGROUP

91ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

GROUP „groupName“ / ENDGROUP

The attributes listed between GROUP and ENDGROUP will be enclosed by a group-box with the
name <groupName>

SET_ACCESS usergroup: userGroupSpec

Attributes following this command will only be shown to the user group <userGroupSpec>. This
restriction can be revoked using „SET_ACCESS usergroup: all“

ATTRREP

 Classattribute “AttrRep“ is of type long string, hence the text entered as value is
interpreted as configuration script of the so-called NOTEBOOK.

 Each NOTEBOOK has CHAPTERS, which contains a list of attributes that may be
grouped.

 Relations that are allowed for this class can be automatically created as an own
chapter.

92ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

chapter.

 Appearance of attributes is defined by lines, dialog, control types (ctrltype), width or
format.

 Access rights per attribute can be defined.

AttrRep Syntax Reference

93ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

CLASSATTRIBUTE <AttrRep>
TYPE STRING
VALUE "

NOTEBOOK with-relations
CHAPTER \"Description\"
ATTR \"Name\"
ATTR \"Presentation\"
ATTR \"Description\" lines:5
ATTR \"Comment\" lines:5
ATTR \"Color\" dialog:color

Example for a AttrRep Definition in ALL

Keyword

Attributename:
“AttrRep“ is a special attribute
which defines what other
attributes are processed by
the ADOxx documentation
function

Type definition

94ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ATTR \"Color\" dialog:color
"
FACET <MultiLineString>
VALUE 0

FACET <AttributeHelpText>
VALUE ""

FACET <AttributeRegularExpression>
VALUE ""

Value:
The string of the “AttrRep”
attributes is defined as a
“Notebook”. Therefore a
specific syntax is used.

A help text can be provided for
the attribute.

Type definition

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

95ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

ATTRREP
HANDS-ON

Example Workflow AttrRep
1. Since this class is concrete, a

attribute representation needs to be
defined.

2. Use inherited class attribute
“AttrRep” to define the attribute
representation

3. Write ATTRREP code to provide a
notation for the class

96ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Commented AttrRep Code

Chapter Structure

Attributes

NOTEBOOK

CHAPTER "Definition"

ATTR "Name"

GROUP "Definition"

ATTR "Description"

ATTR "External content"

ENDGROUP

NOTEBOOK

CHAPTER "Definition"

97ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Grouping of
attributes on same

chapter

Attributes

Attribute
Representation

CHAPTER "Definition"

ATTR "Name"

ATTR "Description"

CHAPTER "Dialectic Influence"

ATTR "Influencing dialectics" lines:10

NOTEBOOK

CHAPTER "Definition"

ATTR "External graphic"

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

98ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

CLASS
CARDINALITIES

Class Attribute “Class cardinality”

 The class attribute „Class cardinality “ contains the cardinality definition of the current class.
The cardinality of a class describes

 the minimal/maximal number of objects of this class per model und

 the minimal/maximal number of relations of a specific type,
incoming or outgoing from the object.

 If no cardinalities are defined then there are also no restrictions for this class.

99ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 If no cardinalities are defined then there are also no restrictions for this class.

Hint:Hint:
 A validation of the class cardinality can be performed in the toolkit either

with each save or only when manually selecting the function (depending on the customizing).
 Please consult the ADOxx-Manual volume 4 for a detailed description of the cardinality definition.

Commands of the Class Cardinality

CARDINALITIES

The cardinality definition must start with this command to be valid. It has no
parameters.

RELATION „RelationName“

Restricts the following commands to the relation class with the name
<RelationName>.

FROM_CLASS „ClassName“ / TO_CLASS „ClassName“

Restricts the following commands to relations with the class of <ClassName>.

100ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Restricts the following commands to relations with the class of <ClassName>.

Parameters of the Class Cardinality

min-objects / max-objects

Specifies how many objects of a class can minimally/maximally be available in the
model.

min-relations / max-relations

Specifies the minimal/maximal number of relations which can be connected with this
object from this class.

max-outgoing / min-outgoing / max-incoming / min-

101ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

max-outgoing / min-outgoing / max-incoming / min-
incoming

Restricts the number of allowed incomming/outgoing relations; either:
in general or

with a preceding RELATION command only for this relation or

with a preceding FROM_CLASS or TO_CLASS command only for relations to these classes.

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

102ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

CLASS CARDINALITIES
HANDS-ON

Class cardinality: Examples

 Only one object of the class „A" should exist per model.

 As well no connectors anyRany schould exist incomming to objects of class „A" and only
one connector anyRany maximum should exist outgoing from objects of class „A".

 The cardinalities of the class „A" have to be defined in the following way:

 CARDINALITIES max-objects:1
RELATION "anyRany" max-incoming:0 max-outgoing:1

103ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

RELATION "anyRany" max-incoming:0 max-outgoing:1

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

104ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

CONVERSION

Class Attribute „__Conversion__“

The class attribute „Conversion“ defines and controls the conversion of a modeling object from
one class to another.

When converting three things happen. First a new object of the defined class is created.
Afterwards all attribute values are copied into the new object as defined in the “Conversion”
attribute. In the end the old object is deleted.

105ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Hint:Hint:
 The possibility for the conversion must be defined manually in the

metamodel, so it can be used later in the tool.
 The modeler can access the functionality from the context menu in

the ADOxx-BPM-Toolkit.

Commands and Parameters for Conversion

CLASS „ClassName“

Specifies that an object can be converted into the target class <ClassName>.
Several target classes can be specified.

ATTR „AttrName“

Defines the attributes from which the values will be copied during the conversion.

from

This parameter is used if values should be copied from the source object to the
target object, but the corresponding attributes have different names.

106ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

target object, but the corresponding attributes have different names. from

specifies the name of the source attribute.

Hint:Hint:
A detailed description of the Conversion-Grammar can be found in
the ADOxx-Manual volume 4.

The commands and parameters for the conversion

If you define __Conversion__ for the class „A" with

CLASS „B"
ATTR „ba1"
ATTR „ba2" from: „aa3"

107ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

this means that

• objects of class „A" can be converted to objects of class „B",

• the aa1 is assigned from A to ba1 in B as the have the same name,

• the aa3 from A is assigned to Ba2 from B as they have different names,

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

108ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

CONVERSION
HANDS-ON

Conversion example:
Instances of C->E

109ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

CLASS "E"
ATTR "Name"
ATTR "a1"
ATTR "a2"
ATTR "a3"
ATTR "a4"
ATTR "e1" from:"a1"
ATTR "e2" from:"a2"
ATTR "e3" from:"a3"

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

110ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

MODEL POINTER

The class attribute “Model pointer“

The class attribute „Model pointer“ priorities one specified pointer with the ability to get from
one object in a model directly to another model.

The name of the attribute which provides the reference to another model or object is
specified in the model pointer attribute field.

ADOxx provides a short cut with <Ctrl> + double click to follow the pointer

CLASSATTRIBUTE <Model pointer>

111ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

CLASSATTRIBUTE <Model pointer>
VALUE "ra"
ATTRIBUTE <ra>
TYPE INTERREF

FACET <MultiLineString>
VALUE 0

FACET <AttributeHelpText>
VALUE "helptext"

FACET <AttributeInterRefDomain>
VALUE "VALUE "REFDOMAIN max:1

OBJREF
mt:\"my model type\"
c:\"my class\"
max:1 "

2. SPECIAL CLASS ATTRIBUTE
& ATTRIBUTE

112ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

MODEL POINTER
HANDS-ON

Model pointer: Example

113ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

114ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

3. CLASS ATTRIBUTE &
ATTRIBUTE

Basics: Definition of Attributes

 Attributes for classes and relation classes have to be defined in the definition section of the
class/relation class with 'TYPE'.

 The following attribute types are possible:

 INTEGER integer
 DOUBLE floating number
 STRING string – max. 3699 symbols
 LONGSTRING string – max. 32000 symbols

115ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 LONGSTRING string – max. 32000 symbols
 TIME time
 DATE date
 DATETIME date and time
 ENUMERATION enumeration for selecting a characteristic
 ENUMERATIONLIST enumeration for selecting one or several characteristics
 DISTRIBUTION statistical distribution
 PROGRAMCALL enumeration for selecting a program
 RECORD a table of attributes
 EXPRESSION a formula
 INTERREF reference on a model or an instance
 ATTRPROFREF a preset set of attribuite values

Attribute Types and their Appearance

Numerical Attributes: Integer (INTEGER)

 An attribute of the type "Integer" is defined as an integer from -1,999,999,999 to
1,999,999,999.

 An ADOxx integer is limited to 10 digits plus an optional sign ('+' or '-')

116ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 An ADOxx integer is limited to 10 digits plus an optional sign ('+' or '-')

 The standard value of attributes of this type is "0" or a value defined

Attribute Types and their appearance

Numerical Attributes: Floating number (DOUBLE)

 The amount of decimal places is defined by the attribute definition

 An attribute of the type "Double" is defined for a float within +/-999,999,999,999,999 for an
integer (without decimal places) or +/-999,999,999.999999 for figures with 6 decimals.

 The corresponding attribute value is displayed to 6 decimal places. That means that a

117ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 The corresponding attribute value is displayed to 6 decimal places. That means that a
double value should not exceed a total of 15 significant digits with at last 6 decimal digits!

 The standard value of attributes of this type is "0.000000" or a value defined in the
application library.

Attribute Types and their Appearance

String attributes: String (STRING)

 An attribute of the type "String" is defined for texts up to 3700 characters of any type.
 Hint: The maximum number of characters is 250 for name. That concerns classes, relation, instances,

attributes, application models, libraries and application libraries.

 Model names have a special rule!

The standard value of attributes of this type is "" (no entry) or a value defined in the

118ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 The standard value of attributes of this type is "" (no entry) or a value defined in the
application library.

Attribute Types and their Appearance

String attributes: Longstring (LONGSTRING):

 Some text attributes are already defined as „multi-line“. The parameter lines can be used to
specify how many lines should be shown in the text field of the Notebook.

119ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

specify how many lines should be shown in the text field of the Notebook.

 The parameter dialog can be used to specify special input supports in place of the standard
one.

 An attribute of type "Longstring" is defined for texts up to 32000 characters of any type.

 The standard value of attributes of this type is "" (no entry) or a value defined in the
application library.

Attribute Types and their Appearance

Enumerations / Enumeration lists: Enumeration (ENUMERATION)

120ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 The parameter ctrltype sets how the enumeration should appear, as a drop down list,

as radiobuttons or as checkboxes (only if two possible values).

 An attribute of the type "Enumeration" is characterised by a defined set of values. An
"Enumeration" attribute has exactly one value of this set.

 The standard value of this type is specified in the library definition.

Attribute Types and their Appearance

Enumerations / Enumeration lists: Enumeration list(ENUMERATIONLIST):

An attribute of the type "Enumeration list" is characterised by a defined set of values. An

121ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 An attribute of the type "Enumeration list" is characterised by a defined set of values. An
"Enumeration list" attribute has either none, one or several values of this set. The difference
to an "Enumeration" attribute is, that an "Enumeration list" attribute can have more than one
entry selected!

 The standard value of this type must specified in the library definition.

Attribute Types and their Appearance

Date / Time: Date (DATE)

The ADOxx format for date is YYYY:MM:DD

Date / Time: Time (TIME)

The ADOxx format time is YY:MM:DDD:HH:MM:SS

122ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

The ADOxx format time is YY:MM:DDD:HH:MM:SS

Date / Time: Date and Time (DATETIME)

The ADOxx format time is YYYY:MM:DD HH:MM:SS

 Time format YY:DDD:HH:MM:SS (years:days:hours:minutes:seconds). Valid day ranges are
from 0 to 365, valid hours are between 0 and 23, valid minutes and valid seconds are
between 0 and 59.

 The standard value of attributes of this type is "00:000:00:00:00" or a value defined in the
application library.

Attribute Types and their Appearance

References / Program calls: Intermodel reference (INTERREF)

123ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance

References / Program calls: Programcall (PROGRAMCALL)

 A PROGRAMCALL attribute is characterized by a fixed set of items. These items are related
to AdoScripts which can be called via the user interface. A PROGRAMCALL attribute value
consists of at most one of the defined items and an optional parameter.

124ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Attribute Types and their Appearance

Table: Table (TABLE)

Tables will appear in Notebooks according to the defintion of the table class.

Following adjustments can be done in AttrRep of the table class:

 which columns should be shown

 in what sequence

 Relative width - Parameter width

125ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

An Attribute of Type "Table" (RECORD) is defined by a flexible List-/Table-Administration of
Attribute Types that are put together.
The standard Value for Attributes of this Type depends on the Attribute Types defined in the Table
Class.

Attribute Types and their Appearance

Expressions / Attribute profile references: Expression(EXPRESSION)

126ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Every definition of expression attributes is started with the keyword EXPR. The result type is
is defined with the attribute type: and the default formula is defined with the attribute expr:.
Every time you create an instance (a model, object, or connector), this formula will be used
to compute the result value of the expression.

 By setting the modifier fixed:, you make the expression attribute a fixed expression. The
user will the not be able to change the formula in the Modelling Toolkit.

 The formula itself (defined in the attribute expr:) must never be longer than 3600 characters.

 For expressions with result type double, the attribute format can be used to specify the
number of digits that should be displayed on the user interface. Note: the number of digits
displayed on the user interface do not affect the internal precision of the expression result
value.

Attribute Definition

attribute-definition : instanceattribute-definition |

classattribute-definition .

classattribute-definition : CLASSATTRIBUTE identifier TYPE typeidentifier |
CLASSATTRIBUTE identifier TYPE typeidentifier VALUE val |
CLASSATTRIBUTE identifier VALUE val |
CLASSATTRIBUTE identifier TYPE RECORD .

instanceattribute-definition : ATTRIBUTE identifier TYPE typeidentifier |

ATTRIBUTE identifier TYPE typeidentifier VALUE val |
ATTRIBUTE identifier VALUE val |
ATTRIBUTE identifier TYPE RECORD .

typeidentifier : INTEGER |
DOUBLE |
STRING |

127ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

STRING |

DISTRIBUTION |
TIME |
ENUMERATION |

ENUMERATIONLIST |
PROGRAMCALL |
INTERREF |
EXPRESSION |
ATTRPROFREF .

3. CLASS ATTRIBUTE
& ATTRIBUTE

128ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

& ATTRIBUTE

HANDS-ON

Example for an instance attribute definition

ATTRIBUTE <Description>
TYPE STRING
VALUE ""

FACET <MultiLineString>
VALUE 1

FACET <AttributeHelpText>

Keyword

Attributname:
The name can use alphanumeric
characters

Value:

Type definition

129ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

FACET <AttributeHelpText>
VALUE "" Value:

The concrete value will be
determined by the model.

A help text can be provided for the
attribute.

This FACET defines if a text-box can
be used.

Example of New Attribute in ADOxx

1. Select class 2. Right mouse click

3. Select „New Attribute“

4. Define Attribute

130ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Views of the class hierarchy
Classes
All visible classes will be shown
Relation classes
All available relation classes will be

shown
Metamodel
All classes will be shown
Class hierarchy
All classes will be shown with their

inheritance in a hierarchy
Attributes

131ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Attributes
The attributes of the (relation-)classes

will be shown
Attribute types
The type of each attribute will be

shown
Source- and Target-classes
Shows the endpoints for each relation

class, i.e. between which classes it
can be used.

IDs
Shows ID numbers of classes and

attributes

Icons in ADOxx class hierarchy management

Class (the icon shows the graphical definition of the object and can
therefore vary)

Class (without a graphical definition)

Attribute

132ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Attribute (inherited from another class)

Class attribute

Class attribute (inherited from another class)

133ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

4. ATTRIBUTE FACETS

Attribute Facets Correlation

A
tt

ri
b

u
te

N
u

m
e

ri
c

D
o

m
a

in

A
tt

ri
b

u
te

R
e

g
u

la
r

E
x

p
re

s
s

io
n

A
tt

ri
b

u
te

In
te

rr
e
f

D
o

m
a

in

E
n

u
m

e
ra

ti
o

n

D
o

m
a

in

M
u

lt
iL

in
e

S
tr

in
g

A
tt

ri
b

u
te

H
e

lp

T
e

x
t

R
e

c
o

rd
C

la
s

s

N
a

m
e

R
e

c
o

rd
C

la
s

s

M
u

lt
ip

li
c

it
y

INTEGER X X

DOUBLE X X

STRING X X X

134ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

STRING X X X

LONGSTRING X X X

TIME X

ENUMERATION X X X

ENUMERATIONLIST X X X

PROGRAMCALL X X

RECORD X X X

EXPRESSION X X

INTERREF X X

Attribute Domain Definition 1

Definition

 Example

AttrDomainDef : DomainHead
{ DomainInterval }.
DomainHead : DOMAIN
message:"domainMessage".
DomainInterval : INTERVAL
lowerbound:lowerBoundValue
upperbound:upperBoundValue.

135ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 Example

FACET <AttributeNumericDomain>
VALUE "LAYOUT decimals:2"

FACET <AttributeNumericDomain>
VALUE "DOMAIN

message:\"Enter a value between 0.25 (quarter of an hour) and 20.\"
INTERVAL
lowerbound:0.25
upperbound:20.0"

Attribute Domain Definition 2

Example (cont.)

FACET <AttributeNumericDomain>
VALUE "DOMAIN

message:"The valid Value Range of the Attribute lies between 0 and 100
and between 1000 and 1100."

INTERVAL
lowerbound:0
upperbound:100
INTERVAL
lowerbound:1000
upperbound:1100 "

136ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Regular Expression Definition

Definition

 Example

RegExpDef : RegExpHead.
RegExpHead : REGEXP
message:"regExpMessage"
expression:"regularExpression".

FACET <AttributeRegularExpression>
VALUE "REGEXP

message:\"Enter the time in the format MM.YYYY (Domain 01.1950 to 12.2050).\"
expression:\"^(0[1-9]|1[0-2])\\.(19[5-9][0-9]|20[0-5][0-9])$\""

137ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

expression:\"^(0[1-9]|1[0-2])\\.(19[5-9][0-9]|20[0-5][0-9])$\""

FACET <AttributeRegularExpression>
VALUE "REGEXP

message:"That is not a valid e-mail address!"
expression:".*@.*"
"

FACET <AttributeRegularExpression>
VALUE "REGEXP

message:"Input data in format 'DD.MM.YYYY'."
expression:"^()$|^((((0[1-9]|1[0-9]|2[0-9]).(0[1-9]|10|11|12))|(30.(01|0[3-

9]|10|11|12))|(31.("
"01|03|05|07|08|10|12))).[0-2][0-9][0-9][0-9]${10})"

"

InterRef Domain Definition

Definition Example

InterRfDomainDef: [DomainHead]
{ ModRefDomain } |
{ InstRefDomain }.
DomainHead : REFDOMAIN
[max:totalMaxValue].
ModRefDomain : MODREF
mt:"modelTypeName"
[max:maxValue].
InstRefDomain : OBJREF

FACET <AttributeInterRefDomain>
VALUE "REFDOMAIN

OBJREF
mt:"My ModelType"
c:"MyModelClass"
max:1 "

FACET <AttributeInterRefDomain>
VALUE "REFDOMAIN max:1

MODREF mt:\"Knowledge
Management Process Model\" "

138ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

InstRefDomain : OBJREF
mt:"modelTypeName"
c:"className"
[max:maxValue]. FACET <AttributeInterRefDomain>

VALUE "REFDOMAIN max: 100
OBJREF
mt:"MyFirstModelType\"
c:"MyClassInMyFirstModelType"
max: 50
OBJREF
mt:"MySecondModelType"
c:"MyClassInMySecondModelType"
max: 50 "

Management Process Model\" "

Enumeration Domain Definition

Definition

 Example

ITEM itemText [param:varName:defaultText] [fdlg-
filterX:filterExt fdlg-typeX:filterName]
AdoScript .

FACET <EnumerationDomain>
VALUE "value-1@value-2@value-3@value-n"

139ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

MultiLineString Definition

Definition

The attribute-facet 'MultiLineString' (only for attributes of type STRING) specifies, whether the
text field for the string has a single line (VALUE 0) or several lines (VALUE 1).

The text field allows entering 3700 symbols maximum. In the attribute 'name' entering 255
symbols maximum is possible. A text field with more lines owns scroll-bars in the notebook and
can be enlarged to screen size 640x480 by an enlarging button.

FACET <MultiLineString>

Example

140ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

FACET <MultiLineString>
VALUE 0

FACET <MultiLineString>
VALUE 1

Attribute Help Text Definition

Definition

The attribute-facet 'AttributeHelpText' defines an i-Button (on the right top of the text field),
where the info-text (defined in 'VALUE') is deposited.

FACET <AttributeHelpText>
VALUE "You can change the language from English to German and/or vice versa."

Example

141ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Example for Meta-Data

Attributes can be defined and provided with a descriptive default value.

They should not be provided in the „Notebook“ to prevent the user from
changing these, making them only accessible through processing.

ATTRIBUTE <Application>
TYPE STRING
VALUE "All objects of this aggregation belong together and must be considered
as a grup by all functions. "

FACET <MultiLineString>
VALUE 1

142ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

FACET <AttributeHelpText>
VALUE "Enter a description for documentation purposes."

FACET <AttributeRegularExpression>
VALUE ""

142

4. ATTRIBUTE
FACETS

143ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

FACETS

HANDS-ON

Facet Notebook in Attribute-Edit Mode

1. Select class 2.Right mouse click on an attribute

3. Select „Edit“

144ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

4. Define Facet

145ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

5. MODELTYPES

Definition of Model Types

 Model types, model type-groups and views for model types:

 A model type determines a subset of all instanciable classes and relations.
Each model has a specific model type which can not be changed afterwards.

 Model type-groups should be defined, if the application library consists of many
different model types. This allows to group and structure the available model types.

 A modus is a further restriction of a model type. It defines a subset of the

146ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

 A modus is a further restriction of a model type. It defines a subset of the
assigned classes/relations and simplifies modeling by hiding not needed classes.
The modus of a model can be changed any time unlike the model type.

146

Definition of Model Types

GENERAL order-of-classes: OrderOfClasses

Defines if the sequence of the classes in the modeling tool should be taken from
the meta model (<OrderOfClasses> = „default“) or is specified for each
model type explicitly („custom“).

METHOD graphrep: „attrName”

Introduces a method diagram.

GROUP „GroupName”

147ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

GROUP „GroupName”

Defines a group of model types with the name <GroupName>.

graphrep: „attrName”

Defines a graphical representation for a method diagram. <attrName> specifies an
attribute which contains the representation using the ADOxx GraphRep
language.

147

GENERAL order-of-classes:custom

METHOD graphRep:"Method GraphRep"

{

GROUP "Simulation"

{

MODELTYPE "My First Model Type"

MODELTYPE "My Second Model Type"

}

GROUP "All modeltypes"

Definition of Model Types Sample

148ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

GROUP "All modeltypes"

{

MODELTYPE "My First Model Type"

MODELTYPE "My Second Model Type"

MODELTYPE "My Third Model Type"

MODELTYPE "My Forth Model Type"

}

}

Modelling Stack with four model types, grouped into two model
type groups.

148

Additional Commands to Define Model types
MODELTYPE „modelTypeName“ from MTSource

This command defines a model type <modelTypeName> and inherits all classes and
relations from the source <MTSource> (all, none or a different model type)

plural: „modelTypePluralName“

Defines the plural name of a model type.

bitmap: „fileName“

Defines a graphical symbol for the selection list (<fileName> = path and file name;
backslashes must be masked with an additional backslash, i.e. “\\”).

149ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

attrrep: „attrName“

Provides a Notebook (defined in the library as an attribute with the name <attrName>)
with model attributes for a model type.

INCL / EXCL

Adds (except for all)/removes (except for none) classes and relations to the
MODELTYPE.

pos / not-simulateable

Determines the position in list of model types / excludes the model type from simulation.
149

Example: Model type

MODELTYPE "My First Model Type"

from:none

plural:"My First Model Types"

pos:1

not-simulateable

bitmap:"db:\\MyFirstModelType.bmp "

attrrep:"Notebook for My First Model Type"

150ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

attrrep:"Notebook for My First Model Type"

INCL "My Class 1"

INCL "My Class 2"

INCL "My Class 3"

INCL "has relationship 1"

INCL "has relationship 2"

Commands to define Views on Model Types

MODE „modeName“ from: „modeSource“

This command defines a view modus with the name <modeName>. A list of
classes/relations must be specified (either absolute or relative as described
above) together with this command. MODE can be extended using several
parameters.

from: „modeSource“

Inherits all the classes and relations from the source <modeSource> (all, none

151ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Inherits all the classes and relations from the source <modeSource> (all, none
or a different mode). „all“ relates to the list from the model type (not the whole

metamodel).

no-modeling

The defined mode is not applicable for modeling and will not be shown in the menu
entry “Modi” of the modeling component.

no-documentation

The defined mode is not applicable for creating a documentation.
151

MODELTYPE "My First Model Type" from:none plural: "My First
Model Types"
pos:0 not-simulateable bitmap:"db:\\MyFirstModelType.bmp"
attrrep: "Notebook of My First ModelType"
INCL "My Class 1"
INCL "My Class 2"
INCL "My Class 3"
INCL "has relationship 1"
INCL "has relationship 2"

MODE "Standard" from:all

Example: Model type View

152ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

MODE "Standard" from:all
EXCL "My Class 3"
EXCL "has relationship 2"

MODE "Documentation" from:Standard no-modeling
INCL "My Class 3"
INCL "has relationship 2"

5. MODEL
TYPES

153ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

TYPES

HANDS-ON

Definition of the ADOxx MODI Attribute

2. Select the Tab Add-Ons

1. Select Dynamic Tutorial
Library

3. Fill the „MODI“ Attribute

154ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Library

MODELLING LANGUAGE
IMPLEMENTATION ON ADOxx

155ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

IMPLEMENTATION ON ADOxx

SUMMARY

0..*
0..*

0..1

1..n

Instanzattribut

Klassenattribut Facette

Wertebereich

Attributprofil

...

regular
expression

... Attributfilter
Graphische Dar -

stellung („Notation“)

Attributtyp

Atomarer Typ
Zusammen-

gesetzter Typ

1..*0..*

Attribut

0..*
0..*

0..*

1..n

instance attribute

class attribute facet

value range

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type
composed

type

1..*0..*

attribute

0..*

Meta Model of Meta Modelling Language

2

3

4

156ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*
is from - class

is to - class

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*

1..1
1..1

has

1..* 1..1 1..* 0..*

Klasse Beziehungstyp

Metamodell

ModelltypSicht Entwurfsmuster

Metamodell-
ausschnitt

0..*

1..1

1..1
0..*

1..*

-

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*

1..1
1..1

1..* 1..1

has

1..* 0..*

class relation type

metamodel

modeltypeview design pattern

metamodel
part

0..*

1..1

1

4

5

We thank you for your attention!

In case of any questions, please contact

157ADOxx® Training © BOC Group | boc@boc-group.com

tutorial@adoxx.org

158ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

	MODELLING LANGUAGE IMPLEMENTATION ON ADOxx
	What is ADOxx?
	Meta Modelling Platforms Hierarchy: ADOxx
	SETUP OF IMPLEMENTATION ENVIRONMENT
	Laboratory Development Environment at OMILab
	Administration Toolkit - STARTUP
	ADOxx Experimentation Library
	Modelling Language Implementation
	Meta Model of Meta Modelling Language
	1. CLASSES and RELATIONS
	Class Types in ADOxx II
	Selected Pre-defined ADOxx classes for a "Graph-based environment " II
	Selected Pre-defined ADOxx classes for a "Graph-based environment" IV
	Inheritance/Dependencies of ADOxx Dynamic Metamodel
	Inheritance/Dependencies of ADOxx Static Metamodel
	Definition of a Modeling Class
	Modification of class hierarchy of dynamic library
	Definition: Relation
	2. CLASS ATTRIBUTE & ATTRIBUTE
	Basics: Graphical Notation of Classes
	Some GraphRep-Commands (3)
	GraphRep Example Workflow
	Commented GraphRep: bi-directional example
	GraphRep Examples:
	GraphRep Example:
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	2. SPECIAL CLASS ATTRIBUTE & ATTRIBUTE
	Conversion example:
	Attribute Types and their Appearance
	Attribute Types and their Appearance
	Example of New Attribute in ADOxx
	Regular Expression Definition
	Facet Notebook in Attribute-Edit Mode
	Commands to define Views on Model Types
	

