
1 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

1. CORE FUNCTIONS FOR

MODEL MANIPULATION

QUERY

2 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Platform basic functionalities in the analysis component

Standardized queries:

Standardized queries as „to complete text“, which are completed by the
user. For execution, no AQL knowledge is required.

User-defined queries:

Queries which are defined by the user through standardized queries in AQL
syntax. For execution AQL knowledge is required.

1) AQL = ADOxx Query Language

2

1

mailto:tutorial@adoxx.org
mailto:tutorial@adoxx.org

3 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2.

1.

3.

3.

Standardized & User-defined Queries

Not specific for a method and their

modelling language, but use the

classes and attributes of the

modelling language

Generally held queries –

„Wording is standardized“

Queries, which are complete defined

by the user by using AQL

Queries which are combined by the

user through usage of

standardized queries

Session dependent, regarding of

evaluation parameters

4

2

ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Notation

Extended Backus Naur Form (EBNF) notation is used for describing the AQL syntax. The EBNF

consists of terminal symbols and non-terminal substitution rules. These rules fix how the terminal

symbols can be related to each other.

<twenty> ::= "2" , "0";<onethousandandtwenty> ::= "1", "0", <twenty>;

Symbols { ... }, [...] and | serve to formulate rules in a more compact form :

 {...} arbitrary number of iterations (even 0-times)

 [...] optional (0- or 1-time)

 | alternative

Rules start with a non-terminal expression, followed by "::=" and the corresponding definition.

Keep in mind that AQL is cAse sEnsiTivE

mailto:tutorial@adoxx.org
mailto:tutorial@adoxx.org

5 ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

AQL symbols

‘<‘ and ‘>‘ in this order are used to represent a class, a relation, a model, a model

type, etc. (e.g. <"A">, <"My Model 01"> , <"My Model Type">)

‘:‘ is used for specifying the class of a certain object, or the model where a specific

class is included (e.g. <"A":"My Model 01":"My First Model Type">)

‘>‘ and ‘<‘ in this order are used for filtering the results of a query by a specified

class (e.g.: <"A"> <<- "Relation" >"B"< has as results all objects that fulfill the

query criteria <"A"><<-"Relation" AND are of class B)

‘->‘ , ‘<-‘ , ‘->>‘, ‘<<-‘ , ‘-->‘ , ‘-->>‘ , ‘<--‘ are used for creating AQL expressions that

involve relations in the query criteria (will be detailed in the future slides)

‘{‘ and ‘}‘ are used to represent the object with the specified name (e.g.: {"A01"})

6

3

ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

‘[‘ and ‘]‘ are used to introduce a criteria to an AQL expression ([?"Radius">"10"])

‘(‘ and ‘)‘ are used for deciding the order in which logical operators are evaluated i.e. ‘a

OR b AND c‘ and ‘ (a OR b) AND c ‘ return different results.

‘?‘ is used for imposing a condition on an attribute in the query criteria

(e.g.: <"A">[?"Description" like "*OK*"] returns all objects of class A, whose attribute

„Description" contains the word „OK")

‘!‘ is used for imposing a condition on a variable during the simulation

(e.g.: (<"A">[!"objectCount">"10"]) OR (<"B">[!"objectCount"<="10"]) returns all objects of

class A, if the variable objectCount is higher than 10 and all objects of class B otherwise.

mailto:tutorial@adoxx.org
mailto:tutorial@adoxx.org

7 ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (I)

(Classes)

'<' <class> '>'

the result is all objects of the specified class

Example:

<"class_name">

{"obj_name":"class_name"}

<"class_name":"SecondModel001":"MySecondModelType">

{"obj_name":"class_name":"SecondModel001":"MySecondModelType“}

8

4

ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

<AQL expression> '->' | '<-' | '->>' | '<<-' <Relation>

 The result contains all objects which are linked through the he given relation with at least one object from

the AQL expression

 '->' returns all direct targets of the relation

 '<-' returns all direct start objects of the relation

 '->>' returns all transitive targets of the relation

 '<<-' returns all transitive start objects of the relation

Example:

 {"A1"}->"requires "

 {"A4"}<-"requires"

 <"A">->"requires"

 <"A"><-"requires"

 ({"A2"}->>"requires") -> "has list"

 {"A4"}<<-"requires“

 <"A"><<-"owns“

 <"A">->"requires" >"B"<

AQL Statements (II)

(Relation Classes)

mailto:tutorial@adoxx.org
mailto:tutorial@adoxx.org

9 ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (III)

(Relation Classes)

<AQL expression> '->' | '<-' '<' <Relation> '>'

The result contains all connectors of the specified relation which have as start or

target object one of the objects in the AQL expression

'->' returns all connectors originating from the objects of the AQL expression

'<-' returns all connectors ending in the objects of the AQL expression

Please note similarities and differences with before: if you use the '<' and '>'

symbols, the result contains the connectors and if you don’t use them, it

contains the objects

Example:

<“A"> -> <"requires">

<"A"> <- <"requires">

{“A1"} <- <“requires">

{"A1"} -> <“requires">

10

5

ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (IV)
(InterRefs)

<AQL expression> '-->' | '-->>‘ <InterRef>

The result contains all objects which are referenced in the specified attribute of

any of the objects in the AQL expression
The ‘-->>’ operator returns is all objects which are transitively referenced in the

specified attribute of any of the objects in the AQL expression

Example:

<"A"> --> "IsRunBy"

<"A"> -->> "IsRunBy"

{"A1"} --> "IsRunBy"

{"A1"} -->> "IsRunBy"

{"A1"} -->> "IsRunBy" >“B"<

mailto:tutorial@adoxx.org
mailto:tutorial@adoxx.org

11 ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

<AQL expression> '<--' <InterRef>

The result contains all objects which refer any of the objects in the AQL
expression

Example:
<"A"> <--

Statements (V)

(InterRefs)

12

6

ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (VI)
(Attributes)

 <AQL expression> '[' <Value> <Operator> <Value> ']'

 The result contains all objects, whose attributes fulfill the defined criteria

 Constants (numbers, strings) can only be at the right of the operator

 To the left of the operator there are only attributes or variable references

 Note: Queries with variable references as dynamic components in the performer assignment are only

allowed in the simulation

Example:

 (<"A">[?"attr_name" like "a*"]) AND (<"A">[?"a1" >= 0])

 (<"A">[?"attr_name" = "a1"]) AND (<"A">[?"attr_name" >= 0])

 <"A">[?"Name" like "????a?"]

mailto:tutorial@adoxx.org
mailto:tutorial@adoxx.org

13 ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (VII)
(Record Classes and Attribute Profiles)

<AQL expression> '['<Value>']' '['<Value> <Operator> <Value>']'

The result contains all objects of the start query where their record attribute or

attribute profile fulfills the defined criteria

The first value specifies the name of the record attribute or attribute profile.

See above the rules for the second expression

Note: In case of a record attribute, the criteria is always fulfilled, if at least a table

row of the record attribute meets the defined criteria.

Example:

record attribute: <"A">[?"attr_name"][?"column_name" = "column_value"]

attribute profile: <"A"> [?"attr_name"][?"AP_attr_name" = "attr_value"]

14

7

ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

QUERY

AdoScript
2. EXTERNAL COUPLING

ADOXX FUNCTIONALITY

mailto:tutorial@adoxx.org
mailto:tutorial@adoxx.org

15 ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

ADOscript for Queries

EvalAqlExpression : EVAL_AQL_EXPRESSION expr:strValue (modelid:intValue | modelscope) .

--> RESULT ecode:intValue objids:strValue

EVAL_AQL_EXPRESSION will evaluate the AQL string specified by the argument expr.

The return variable ecode is 0 if the evaluation yielded no error.

The list of found objects or models is returned in the variable objids (separated by blanks).

16

8

ADOxx® Tutorial Version 1.1 © BOC Group | tutorial@adoxx.org

ADOscript for Queries (Examples)

Example 1: Get all objects of class „A" in a certain model
CC "Modeling" GET_ACT_MODEL

#-->RESULT modelid:intValue

CC "AQL" EVAL_AQL_EXPRESSION expr:"<\"A\">" modelid:(modelid)

IF (ecode = 0) {

 CC "AdoScript" INFOBOX ("Found objects: " + objids)

}

ELSE {

 CC "AdoScript" INFOBOX "An error has occured!"

}

Example 2: Get all models of modeltype "Sample"
CC "AQL" EVAL_AQL_EXPRESSION expr:"<\"Sample\">" modelscope

IF (ecode = 0) {

 CC "AdoScript" INFOBOX ("Found models: " + objids)

}

ELSE {

 CC "AdoScript" INFOBOX "An error has occured!"

}

mailto:tutorial@adoxx.org
mailto:tutorial@adoxx.org

