
24 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. CONFIGURATION

OF ADOXX COMPONENTS

QUERY

25 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Platform basic functionalities in the analysis component

Predefined queries:

Professional queries, which are business or method specific defined. For the

execution of these, no AQL knowledge required.

Relation tables:

Relation tables make relations (connectors or references) between two objects of

same or different models.

1) AQL = ADOxx Query Language

26 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Predefined queries are…

  Queries on models, model content and dependencies of models

 Session-independent

 Defined by the user and therefore easy to use

 Specific for the used model and their modelling language

 A configuration of the basic functionalities of the ADOxx Platform. These queries can:

 Be defined for models of a specific type

 Combined into groups (topics)

27 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Creation of method-specific Queries

Steps which are necessary:

1. Define menu item

2. Define input fields

3. Define AQL queries

4. Define result attributes

28 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Start Analysis Query Function

Choose Library

(D- or S-Library)

„Predefined analysis queries“

 SmartIcon

or

 Menu „Library“
 Menu item „Configuration“

List of all application libraries

1.

2.

In order to edit the analysis queries you can use selection dialogs in the library

management

29 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Query Functions

Available functions:

New: Create a new menu item or a new query

Edit: Edit an existing query

Delete: Delete an existing query from the

library

Search entries: Call of the ADOxx search

function

Save tree-structure: Save the content of the

text file

Show/close: Diverse view options

The appeal of all these function is under the context menu of

the list

30 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

1. Define Menu Item

The creation of a new analysis query is defined through following steps:

 Create query

 Define input fields

 Define AQL-queries

 Define result attributes

For all of these steps there is a chapter in the dialog

Note: Before creating a new predefined query, it is necessary to put it manually together and test it in the ADOxx-

BPM-Toolkit with the „Query/reports“ function. By using this approach you get als the AQL code which is necessary

in the later procedure.

31 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Define Query Appearance

Mark the new query

Switch to Chapter „Input fields“

 Context menu of the list

 Menu item „New“

1.

2.

3.

32 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

2. Define input fields

Each query consists of an individual set of parts:

Text

Input Field

Enumeration Field

Attribute Value Field

Attribute Enumeration Field

Attribute Field

Class Field

Relation Field

33 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Types of Input Fields

Following types of fields are available:

Input fields: For Attributes of type Text (STRING, LONGSTRING), time (TIME),

date (DATE), date and time (DATETIME), integer (INTEGER) und double

(DOUBLE).

Enumeration value field: For attributes of Type enumeration (ENUMERATION)

and enumeration list (ENUMERATIONLIST).

Attribute value field: For the takeover of attribute values from attributes of different

classes.

Enumerated attribute field: For the takeover of attribute values from enumerated

attributes of different classes.

Attribute field: For choosing of attributes from a list of all attributes of all classes.

Class field: For choosing of a class from a list of all classes of the active model type.

33

34 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

3. Define AQL-Queries (1)

To make your query functional, it is necessary to deposit it as an AQL-query.

Switch to the chapter „AQL expressions“

1. Choose Option

„AQL Part“
2. Copy manually designed

AQL statement

3. Add „References“ to link

input fields with query

4. Follow proposal to place

input fields into query

statement

1. New AQL Part

3. New Reference

Link input fields

with AQL

expressions

35 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Define AQL-Queries (2)

Detail view on AQL part:

Either manually type in the

statement or click on the

query.

Note:

The shown AQL input support is from

the construction same as the function

„Query/reports“ in the ADOxx-BPM-Toolkit.

36 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Define AQL-Queries (3)

In the next steps it is necessary to transform the query part.

1. Context menu

of the list entry „AQL part“
2. Menu point „New“

37 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

4. Result Attributes (1)

In the chapter „Result attribute“ it is
specified which objects and

attributes should be in

the result representation.

1. Switch to chapter

„Result attributes“
2. Choose Option „Attribute“
3. Determine Position

4. Confirm

 Contextmenu of the list „Classes“
 Menu item „New“

38 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

New Menu Item

Besides the creation of queries,

you can also create new menu

items, in order to structure the

queries.

In the Query-choose window

select a query group

 Select option

„Menu point“
 Determine position

 Confirm

 Input title

 Choose model type

 Confirm

 Contextmenu of shortlist

 Menu item „New“

39 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

New Menu Item – Details

When creating new menu items should be noted:

every menu point is exactly assigned to one model type

The menu items in the selection dialog correspond exactly to the ADOxx-based

Toolkit

After the creation of the menu item a query must be added to it, because the menu

item won‘t be saved.
Through input of tilde (~) in the menu name the following word will be an accelerator

(keyboard shortcut)

40 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Notation

 Extended Backus Naur Form (EBNF) notation is used for describing the AQL syntax

 Terminal symbols

 symbols which cannot be split up further

 are included by inverted commas ´…´

 Non-terminal symbols

 are included by <...>

 Symbols {...}, [...] and | serve to formulate rules in a more compact form :

 {...} arbitrary number of iterations (even 0-times)

 [...] optional (0- or 1-time)

 | alternative

 Rules start with a non-terminal symbol, followed by "::=" and the symbol's definition

HINT: Keep in mind that AQL is cAse sEnsiTivE

41 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Terminal symbols (I)

‘<‘ and ‘>‘ in this order are used to represent a class, a relation, a model, a model
type, etc. (e.g. <"Rectangle"> , <"My Model 01"> , <"My First Model Type">)

‘:‘ is used for specifying the class of a certain object, or the model where a specific
class is included (e.g. <"Red Rectangle 01">:<"Rectangle"> ,

<"Rectangle">:<"My Model 01">:<"My First Model Type">)

‘>‘ and ‘<‘ in this order are used for filtering the results of a query by a specified
class (e.g.: <"B"><<-"requires" >"A"< has as results all objects that fullfill the

query criteria <"B"><<-"requires" AND are of class A)

‘->‘ , ‘<-‘ , ‘->>‘ ‘<<-‘ , ‘-->‘ , ‘-->>‘ , ‘<--‘ are used for creating AQL expressions that
involve relations in the query criteria (will be detailed in the future slides)

42 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Terminal symbols (II)

‘{‘ and ‘}‘ are used to represent the object with the specified name (e.g.:
{“Rectangle“})

‘[‘ and ‘]‘ are used to introduce a criteria to an AQL expression ([?"Radius">"10"])

‘(‘ and ‘)‘ are used for deciding the order in which logical operators are evaluated
i.e. ‘a OR b AND c‘ and ‘ (a OR b) AND c ‘ return different results

‘?‘ is used for imposing a condition on an attribute in the query criteria (e.g.:
<"A">[?"Description" like "*OK*"] returns all objects of class A, whose attribute
„Description“ contains the word „OK“)

‘!‘ is used for imposing a condition on a variable during the simulation (e.g.:
(<"A">[!"objectCount">"10"]) OR (<"B">[!"objectCount"<="10"]) returns all
objects of class A, if the variable object Count is higher than 10 and all objects
of class B otherwise.

43 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Non-terminal symbols and key words (I)

Names of classes, names of objects, names of relations, names of attributes, names of
variables and constants are denoted by inverted commas (e.g.: "A" , "Rectangle" ,
"requires" , "Colour")

<Class> ::= ‘<‘class_name‘>‘
Represents a class (e.g. <“requires“>)

If the class is not included in the current model, the class has to be denoted
explicitly through model name and model type

<Class>':'<ModelName>':'<ModelType>

(e.g.: <“Rectangle“>:<“My Model 01“>:<“My First Model Type“>)

<Object> :: = ‘<‘object_name‘>‘
Represents an object within a concrete model (e.g. <“Red Rectangle 01“>)

Should the name of the objects be ambiguous, the name of the class has to be
appended to the object's name: <Object>':'<Class>

(e.g.: <“Red Rectangle 01“>:<“Rectangle“>)

if the referenced object is not part of the current model, the object has to be
denoted explicitly through model name and model type:

<Object>':'<Model name>':'<Model type>

(e.g.: <“Red Rectangle 01“>:<“My Model 01“>:<“My First Model Type“>)
<Object>':'<Class>':'<Model name>':'<Model type>

(e.g.: <“Square 01“>:<“Square“><“My Model 02“>:<“My First Model Type“>)

44 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Non-terminal symbols and key words (II)
<Relation> ::= ‘<‘relation_name‘>‘

represents a relation class (e.g. <“requires“>)

<Attribute> ::= ‘<‘attribute_name‘>‘
represents the name of an attribute (e.g. <“Color“>, <“Description“>)

<Value> ::= <Constant> | '!' <Variable> | '?' <Attribute>

 a value is either a constant, a variable preceded by the symbol ‘!‘ or an attribute
preceded by the symbol ‘?‘

<Operator> ::= '>' | '>=' | '=>' | '=' | '<=' | '=<' | '<' |'!='| 'like' | 'unlike'

'like' and 'unlike' are used for alphanumerical signs

? and * are wildcards:„*“ substitutes for any zero or more characters and „?“
substitutes for any one character or less (123??? will match 12313 or 1233,

but not 1239919991)

the other operators are used for comparing numerical values

<LogicalOperator> ::= 'AND' | 'OR' | 'DIFF‘
'AND‘ : the result is the intersection set of the two expressions

'OR‘ : the result is the union set of the two expressions

'DIFF' : the result is the difference of the two expressions

'AND' links more strongly than 'OR' and 'OR' more strongly than 'DIFF'

45 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Non-terminal symbols and key words (II)

<AQL expression> ::= '{' [<Object>] [',' <Object>] '}'

the result of an AQL expression is a set of objects (0,1 or more)

<AQL expression> ::= '(' <AQL expression> ')'

expressions may contain parentheses

<AQL expression> ::= <AQL expression> {<LogicalOperator> <AQL expression>}

expressions can be linked to one or more expressions by logical operators

<AQL expression> ::= <AQL expression> '>'<Class>'<'

expression results can be filtered by a specific class

46 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (I)

'<' <class> '>'

the result is all objects of the specified class

Example:

<"A">

<"Square":"SecondModel001":"My Second Model Type">

<"A"> [?"Name" like "????e?"]

<"B"> <- "requires"

47 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (II)

 <AQL expression> '->' | '<-' | '->>' | '<<-' <Relation>

 The result contains all objects which are linked through the given relation with at least one object from

the AQL expression

 '->' returns all direct targets of the relation

 '<-' returns all direct start objects of the relation

 '->>' returns all transitive targets of the relation

 '<<-' returns all transitive start objects of the relation

Example:

 {"A1"}->"requires "

 {"A4"}<-"requires"

 <"A">->"requires"

 <"A"><-"requires"

 {"Rectangle01"}<-“owns“
 ({"A2"}->>"requires") -> "has list"

 {"A4"}<<-"requires“
 <"Rectangle"><<-"owns“
 <"A">->"requires" >"B"<

48 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (III)

<AQL expression> '->' | '<-' '<' <Relation> '>'

The result contains all connectors of the specified relation which have as start or

target object one of the objects in the AQL expression

'->' returns all connectors originating from the objects of the AQL expression

'<-' returns all connectors ending in the objects of the AQL expression

Please note similarities and differences with before: if you use the '<' and '>'

symbols, the result contains the connectors and if you don’t use them, it
contains the objects

Example:

 <"B">-><"requires">

 <"A"><-<"requires">

 {"List003"} <- <"has list">

 {"A1"} -> <"has list">

49 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (IV)

<AQL expression> '-->' | '-->>' <Attribute>

The result contains all objects which are referenced in the specified attribute of
any of the objects in the AQL expression

The ‘-->>’ operator returns is all objects which are transitively referenced in the
specified attribute of any of the objects in the AQL expression

Example:

 <"A"> --> "IsRunBy"

 <"A"> -->> "IsRunBy"

 {"A5"} --> "IsRunBy"

 {"A5"} -->> "IsRunBy"

 {"A5"} -->> "IsRunBy" >"Rectangle"<

50 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

Statements (V)

<AQL expression> '<--'

The result contains all objects which refer any of the objects in the AQL
expression

Example:

 <"Rectangle"> <--

51 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (VI)

 <AQL expression> '[' <Value> <Operator> <Value> ']'

 The result contains all objects, whose attributes fulfill the defined criteria

 Constants (numbers, strings) can only be at the right of the operator

 To the left of the operator there are only attributes or variable references

 Note: Queries with variable references as dynamic components in the performer assignment are only

allowed in the simulation

Example:

 (<"A"> [?"Description" like ""]) AND (<"A"> [?"A_cost" >=10])

 <"A">[?"Description" like "*Test*"]

 (<"Rectangle">[?"Name" like "M*"]) AND (<"Rectangle">[?"Area" <= 20])

 <"A">[?"Name" like "????e?"]

52 ADOxx® Training Version 1.1 © BOC Group | tutorial@adoxx.org

AQL Statements (VII)

<AQL expression> '['<Value>']' '['<Value> <Operator> <Value>']'

The result contains all objects of the start query where their record attribute or

attribute profile fulfills the defined criteria

The first value specifies the name of the record attribute or attribute profile.

See above the rules for the second expression

Note: In case of a record attribute, the criteria is always fulfilled, if at least a table

row of the record attribute meets the defined criteria.

Example:

record attribute: <"List">[?"Classification"][?"State" = "Authorized"]

attribute profile: <"A"> [?"Availability"][?"Days per week" >= 3]

	Platform basic functionalities in the analysis component
	Predefined queries are…
	Creation of method-specific Queries
	Define Menu Item
	Define input fields
	Define AQL-Queries
	Result Attributes

	AQL
	Notation
	Terminal symbols
	Non-terminal symbols and key words
	Statements

	3. EXTERNAL COUPLING ADOXX FUNCTIONALITY

