
1ADOxx® Tutorial © BOC Group | boc@boc-group.com

MODELLING LANGUAGE

IMPLEMENTATION ON ADOxx®

ADOxx® Tutorial

2ADOxx® Tutorial © BOC Group | boc@boc-group.com

What is ADOxx®?

“ADOxx® is a meta modelling

development and configuration

platform for implementing

modelling tools.”

3ADOxx® Tutorial © BOC Group | boc@boc-group.com

developed

in

Meta ModellMeta Modell

Inherited from

Instance of

ADOxx® Developer

MM-Tool Developer

C++

ALL

ADLcreated

by

developed

by

developed

by

developed

by

Model

MM – Tool

Development

Part

described

in

developed

in
Method-specific

Meta Model

Method-specific

Meta Model

ADOxx®

Meta Model

ADOxx®

Meta Model

Instance of

ADOxx®

Meta2 Model

ADOxx®

Meta2 Model

MM-tool User

Meta Modelling Platforms Hierarchy: ADOxx®

MM … Modelling Method

4ADOxx® Tutorial © BOC Group | boc@boc-group.com

Introduction of ADOxx®:

Definition: Model types, Classes, Attributes and Relations

� Model Types:

A model type is a well-defined sub collection of classes and relation classes of a meta model.

� Classes:

A class is a construct that is used as a template to create objects of that class. The objects of a

class are alternatively called "instances"

� Attributes:

An attribute is a property of a modelling construct such as a model, object or relation. Each

attribute has a type and a value.

� Relations:

A relation class is a construct that is used as a template to create relations between objects. A

relation class is defined between classes. A relation is always a directed connection between

objects, i.e. each relation has a from-side and a to-side.

5ADOxx® Tutorial © BOC Group | boc@boc-group.com

SETUP OF

IMPLEMENTATION ENVIRONMENT

6ADOxx® Tutorial © BOC Group | boc@boc-group.com

OM - EnvironmentOM - Environment

ADOxx® FrameworkADOxx® Framework

The OMI – Development Infrastructure

Experimentation

Platform

Experimentation

Platform
„Project“

Platform

„Project“

Platform

Development

Environment

Development

Environment

MM-Specific ToolMM-Specific Tool

publishes

is provided into

supports development supports usage

User Interaction Tool

ADOxx® Kernel

User Interaction Tool

ADOxx® Kernel

7ADOxx® Tutorial © BOC Group | boc@boc-group.com

Administration Toolkit - STARTUP

1. Start Administration Toolkit

2. Login into Administration Toolkit

3. Default Development User

4. Username: %TUTORIAL_USER%

Password: %TUTORIAL_PASSWORD%

DB: % TUTORIAL_DB%

as “ADOxx user”

5. BACKGROUND: connection to

experimentation database hosted on a server

platform

8ADOxx® Tutorial © BOC Group | boc@boc-group.com

Administration Toolkit - Components

Development Environment:

Library Management

Component

Debug User needed in the

database to start modelling

toolkit for validation

U: debug

P: debug

Create user in “User

Management” component for

testing purposes

9ADOxx® Tutorial © BOC Group | boc@boc-group.com

ADOxx® (Experimentation) Tutorial Library

� Development aggregated in “Application Library” consisting of Static and

Dynamic sub-library

� Dynamic: ADOxx 1.3 Dynamic Tutorial Library (Experimentation Environment)

� Static: ADOxx 1.3 Static Tutorial Library (Experimentation Environment)

10ADOxx® Tutorial © BOC Group | boc@boc-group.com

MODELLING LANGUAGE

IMPLEMENTATION

11ADOxx® Tutorial © BOC Group | boc@boc-group.com

Modelling Language

Implementation

Modeling

Procedure

Modeling

Method
Modeling

technique Mechanisms

& Algorithms
Modeling

Language

MM … Modelling Method

Reference: Kühn, H. (2004). Methodenintegration im Business Engineering. PhD Thesis, University of Vienna

Implicit

ADOxx®

support

ADOxx®

Mechanisms & Algorithms

Modelling Method Implementation based on ADOxx®

MM-Specific

Inheritance of

ADOxx® Meta Model

MM-Specific

Inheritance of

ADOxx® Meta Model

Indirect support of

procedure

Indirect support of

procedure

MM-Specific

Configuration & Scripting

of ADOxx® + Add-Ons

MM-Specific

Configuration & Scripting

of ADOxx® + Add-Ons

ADOxx® Meta Model

Inheritance Configuration & Scripting

12ADOxx® Tutorial © BOC Group | boc@boc-group.com

arranges
accordingto

definesgrammar

Semantics

definesmeaning

Semantic
Schema

Syntax

Semantic
Mapping

connects
considers

Notation

Modelling
Language

semantics

semantic
domain

syntaxnotation

modelling
language

definesvisualization

visualizes

semantic
mapping

describes
meaningof

definesway of languageapplication
delivers

results

modeling
procedure

modelling
technique

modelling
method

mechanisms
& algorithms

used for

used in

generic
mechanisms
& algorithms

hybrid
mechanisms
& algorithms

specific
mechanisms
& algorithms

steps
(designlogic)

Reference: Karagiannis, D., Kühn, H.: „Metamodelling Platforms“. In Bauknecht, K., Min Tjoa, A., Quirchmayer, G. (Eds.):
Proceedings of the Third International Conference EC-Web 2002 – Dexa 2002, Aix-en-Provence, France, September 2002,
LNCS 2455, Springer, Berlin/Heidelberg, p. 182 ff.

Generic Modelling Method Framework

13ADOxx® Tutorial © BOC Group | boc@boc-group.com

Meta Model of Meta Modelling Language

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*

is from - class

is to - class

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

has

1..* 1..1 1..* 0..*

0..1

1..n

Instanzattribut

Klasse Beziehungstyp

Metamodell

Klassenattribut Facette

Wertebereich

ModelltypSicht Entwurfsmuster

Attributprofil

...

regular

expression

... Attributfilter
Graphische Dar -

stellung („ Notation “)

Attributtyp

Atomarer Typ
Zusammen -

gesetzter Typ

1..*0..*

Attribut

Metamodell -

ausschnitt

0..*

1..1

1..1
0..*

1..*

-

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

1..* 1..1

has

1..* 0..*

1..n

instance attribute

class relation type

metamodel

class attribute facet

value range

modeltypeview design pattern

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type
composed

type

1..*0..*

attribute

metamodel

part

0..*

1..1

14ADOxx® Tutorial © BOC Group | boc@boc-group.com

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*

is from - class

is to - class

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

has

1..* 1..1 1..* 0..*

0..1

1..n

Instanzattribut

Klasse Beziehungstyp

Metamodell

Klassenattribut Facette

Wertebereich

ModelltypSicht Entwurfsmuster

Attributprofil

...

regular

expression

... Attributfilter
Graphische Dar -

stellung („ Notation “)

Attributtyp

Atomarer Typ
Zusammen -

gesetzter Typ

1..*0..*

Attribut

Metamodell -

ausschnitt

0..*

1..1

1..1
0..*

1..*

-

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

1..* 1..1

has

1..* 0..*

1..n

instance attribute

class relation type

metamodel

class attribute facet

value range

modeltypeview design pattern

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type
composed

type

1..*0..*

attribute

metamodel

part

0..*

1..1

Meta Model of Meta Modelling Language

1

2

3

4

5

15ADOxx® Tutorial © BOC Group | boc@boc-group.com

1. CLASSES and RELATIONS

16ADOxx® Tutorial © BOC Group | boc@boc-group.com

Class Types in ADOxx® I

� Pre-defined Abstract Classes (ADOxx® meta model class)

� Pre-defined abstract classes are classes that are provided by ADOxx® with a given semantic and basic

syntax in form of attributes. They can be used to inherit the pre-defined syntax and the attributes to either

self-defined abstract classes or to classes.

� ADOxx® functionality that is provided for the pre-defined abstract classes can be used for any inherited

concrete class. Hence pre-defined and provided ADOxx® functionality is consumed due to inheritance of

such pre-defined abstract classes.

� Pre-defined abstract classes are the ADOxx® meta model, hence they exist in every meta model based

on ADOxx®.

� Nomenclature: __ Class Name __

17ADOxx® Tutorial © BOC Group | boc@boc-group.com

Classe Types in ADOxx® II

� Abstract Classes

� Abstract classes are self-defined classes enabling to structure the meta model and define syntax in form

of attributes and semantic, which is inherited by sub-classes.

� Abstract classes either inherit from the root class of the meta model, or from any other class of the meta

model. Hence, they inherit the behaviour from their super-class – which is often a pre-defined abstract

class from the ADOxx® meta model.

� Abstract classes enable an efficient meta model, hence they may not be in every ADOxx® meta model.

� Nomenclature: _ Class Name _

� (Concrete) Classes

� Classes are self-defined classes defining a concrete modelling class that can be used, when applying the

corresponding modelling language. Hence all model objects in every model created on ADOxx® is an

instance of a class.

� Classes inherit the semantic and the attributes from the Pre-defined abstract class and additionally - in

case of inheriting - from the abstract class.

� Classes enable the realisation of a concrete meta model.

� Nomencladure: Class Name

18ADOxx® Tutorial © BOC Group | boc@boc-group.com

Selected Pre-defined ADOxx® classes for a

"Graph-based environment " I

� __ D_Construct ___

� Super class for „graph-based“ pre-defined meta model.

� __ D_Container __

� Container class provide the relation „is-inside“, hence every object a drawn on the model having its x/y

coordinates within the drawing area of any container b has the relation a Ris-inside b.

� __D_aggregation__

� Aggregation inherits from __D_Container__, hence also provides the „is-inside“ relation and enables a

self-defined „drawing area“. E.g. resizeable rectangel.

� __D_swimmlane__

� Swimmlane inherits form __D_Container__, hence also provides the „is-inside“ relation but only enables

either rows (x=0 to x= maximum) or colums (y= 0 to y= maxium) as possible „drawing area“. E.g. three

colums one for input, one for processing, one for output

19ADOxx® Tutorial © BOC Group | boc@boc-group.com

Selected Pre-defined ADOxx® classes for a

"Graph-based environment " II

� __ D_Event ___

� Event encapsolates all possible notes of a graph and distinguishes between

“D_variable_assignment_object” and “D_end”.

� __ D_end __

� The end concludes the graph and finishes state changes.

� __D_variable_assignment_objects__

� Variable assignment objects enable the change of the state. The state is stored in variables, hence each

of the following concepts have the potential to change the status of variables within a graph:

� Neutral element, start, subgraph, activity, decision, parallelity, merging

� __D_Neutral element__

� Neutral elements do not participate in executing the graph but only display references or state the status.

� __D_Start__

� Start is the starting node of the graph.

20ADOxx® Tutorial © BOC Group | boc@boc-group.com

Selected Pre-defined ADOxx® classes for a

"Graph-based environment " III

� __ Subgraph ___

� Subgraph substitutes a sub-graph in the graph to make complex graphs more readable. Technically the

subgraph is a pointer to another graph.

� __ Activity__

� Activity is a node in the graph that performs the typical actions the graph is designed for. Activities are

transforming input into output.

� __Decisions__

� Decisions split the graph in several alternative paths.

� __Parallelity__

� Parallelity starts a synchronized path of a graph.

� __Merging__

� Merging ends a synchronized path of a graph.

21ADOxx® Tutorial © BOC Group | boc@boc-group.com

Selected Pre-defined ADOxx® classes for a

"Graph-based environment" IV
Sample Graph

O Xa1

a2

a3

a4

a5

a6

a7XOR AND

Possible mapping of graph to ADOxx® meta model

O Xa1

a2

a3

a4

a6

a7

__Start__
__Activity__

XOR

__Decision__

AND () AND

__Parallelity__ __Merge__

__End__

a5

22ADOxx® Tutorial © BOC Group | boc@boc-group.com

Selected Pre-defined ADOxx® classes for a

"Graph-based environment" II

� __ D_variable ___

� Variables are objects that store a certain status of the graph. Hence different variables can be defined,

describing different aspects of a graph.

� __ D_random_generator __

� Random generator creates random figures that can be assigned to variables. This is used for simulation.

� __D_resources__

� Resources are properties of graph-nodes represented in an own class hierarchy. Hence descriptive

properties need not only be defined as attributes of graph nodes but can be described as classes using

class hierarchy from resources.

23ADOxx® Tutorial © BOC Group | boc@boc-group.com

ADOxx D-Meta ModelADOxx D-Meta Model

I
H

G

Application Library Language (ALL)

__D_container__

__D_Construct__

__D_aggregation__

__D_event__ __D_variable__ __D_random generator__

__LibraryMetaData__

__D_end__

__ Neutral element __ __ Decision __ __ Parallelity __ __ Merging __

Sample – Meta Model

Inheritance of a sample

meta model

X

__D_variable_assignment_object__

__ Activity __

A B

__D_agent__ __D_resource__

W

__ Start __

__D_swimmlane__

DC

E
E

V

X … as a container class

G … as an abstract class

H … as a modelling class

I … as a flow class

__ Subgraph __

Included in tutorial library

To be implemented in

tutorial

24ADOxx® Tutorial © BOC Group | boc@boc-group.com

Selected Pre-defined ADOxx® classes for a

"Tree-based environment" I

� __ S_Construct ___

� Super class for „hierarchy” pre-defined meta model.

� __S_Group__

� Group is a tree node

� __ S_Container __, __S_aggregation__, __S_swimmlane__

� Is a special form of a tree-node, same as in __D_Container__

� __S_resource__

� Resources are properties of tree-nodes represented in an own class hierarchy. Hence descriptive

properties need not only be defined as attributes of tree nodes but can be described as classes using

class hierarchy from resources.

� __S_person__

� In case persons are represented a special class is reserved for implementing person depending

behaviour (privacy etc.).

25ADOxx® Tutorial © BOC Group | boc@boc-group.com

ADOxx S-Meta ModelADOxx S-Meta Model

25

S
Z

Application Library Language (ALL)

__S_container__

__S_Construct__

__S_aggregation__ __S_swimmlane__

__D_agent____S_group__ __S_person__

Sample – Meta Model

Inheritance of a sample

meta model

Y

__S_resource__

T Result-of-Count

Included in tutorial library

To be implemented in

tutorial

S … as a resource class

Y … as a container class

H … as a modelling class

Z … as a class derived from T

26ADOxx® Tutorial © BOC Group | boc@boc-group.com

Realisation of Meta Model

Specification of a meta model in ALL

1. Specify the meta model starting from the „Empty Meta Model“ and add classes etc. with ALL

using a text editor. Abstract class is defined by the classattribute isabstract.

2. Translate ALL into the ADOxx® interpretable ABL format and import the meta model into

ADOxx.

class : class-definition { attribute } |

redefclass-definition { redefattribute } .

class-definition : CLASS identifier ':' identifier .

classattribute-definition : CLASSATTRIBUTE identifier TYPE typeidentifier |
CLASSATTRIBUTE identifier TYPE typeidentifier VALUE val |
CLASSATTRIBUTE identifier VALUE val |
CLASSATTRIBUTE identifier TYPE RECORD .

Implementation of a meta model in ADOxx® Development Environment

1. Specify the meta model starting from the „Empty Meta Model“ and add classes etc. by using

the functionality of the development environment

2. Save the meta model.

27ADOxx® Tutorial © BOC Group | boc@boc-group.com

Definition of a Modeling Class

//====================================
CLASS <Aggregation> : <__BP_Aggregation__>
//====================================

//--- Class <Aggregation> - Class attributes-

//--- Class <Aggregation> - Instance attributes-

Inheritance from a
modeling class from
the meta-model

Predefined abstract
classescomments

Keyword

28ADOxx® Tutorial © BOC Group | boc@boc-group.com

1. CLASSES and RELATIONS

HANDS-ON

29ADOxx® Tutorial © BOC Group | boc@boc-group.com

Modification of class hierarchy

of dynamic library

30ADOxx® Tutorial © BOC Group | boc@boc-group.com

Add a new abstract class below the root

element that is used to define “_G_”

related issues

1.Select root class, click “New” -> “New

class”

2.Name new class as an abstract class

Naming concention: start and end with “_”

31ADOxx® Tutorial © BOC Group | boc@boc-group.com

� Make class abstract using

“ClassAbstract“ attribute

-> Effect: class can not be

instantiated in the modelling tool,

modeltype definition+

32ADOxx® Tutorial © BOC Group | boc@boc-group.com

� Add a new concrete class below

the abstract element that is used

to define a concrete class

� Select the abstract class, click

“New” -> “New class”

� Name new class

� The new created class can be

identified on instance level by

the “Name” attribute. This

attribute is automatically/implict

available for each class

33ADOxx® Tutorial © BOC Group | boc@boc-group.com

Add a new concrete class below the

__D_event__ element that is used to

define a flow class

� Select “__D_event__” class,

click “New” -> “New class”

� Name new class

�The new created class can be

identified on instance level by the

“Name” attribute. This attribute is

automatically/implict available for

each class

34ADOxx® Tutorial © BOC Group | boc@boc-group.com

� Add a new concrete class below the

__D_aggregation__ element that is

used to define Grouping

� Select “__D_aggregation__ ”class, click

“New” -> “New class”

� Name new class

� The new created class can be identified

on instance level by the “Name”

attribute. This attribute is

automatically/implict available for each

class

35ADOxx® Tutorial © BOC Group | boc@boc-group.com

1. CLASSES and RELATIONS

36ADOxx® Tutorial © BOC Group | boc@boc-group.com

Definition: Relation

� Source and Target Class:

Any class – Pre-defined abstract class, abstract class or class – can act as source class defining where the

relation starts from, as well as target class defining where the relations ends.

� Cardinality:

Cardinality like 1:1, 1:n and n:m relationship is defined in the cardinality of the relation.

� Attributes:

Attributes are descriptive properties of relations and handled like attribute for classes.

A BRAB

Attribute

Attribute

Attribute

Relationship between objects are defined as relationtypes

between classes. Relations are defined by their source and

target class, their cardinality, and their attributes.

37ADOxx® Tutorial © BOC Group | boc@boc-group.com

Relation Types

� Relations in ADOxx® are expressed either as a class “Relation Class” or as a pointer in

form of an attribute called “InterRef”.

� Relation as Class “RC”

� describes relationship between two objects from two or more classes within one model.

� has start and endpoints define which (abstract) classes a relation can connect

� Cardinality and attribute defined the semantic of the relations class

� Relation as Attribute “InterRef”

� Is a special configuration of a Relation Class and describes the relationship between two objects from

two or more classes within or across models.

� Is a pointer represented as an attributed in the class the relation starts from, with defined classes the

relation can point to.

� Cardinality defines the semantic of the InterRef

b
(B)

a
(A)

Model

B
(�B)

A
(�A)

FROM TO

Metamodel

Instance of conformsTo Instance ofconformsTo

Instance of

rab

RCAB

FROM TO

38ADOxx® Tutorial © BOC Group | boc@boc-group.com

Relation Types: Inheritance of Relation Class

b‘(B‘)a‘ (A‘)

Model

B
(�B)A (�A)

FROM TO

Metamodel

instance of

conformsTo

instance of

conformsTo

conformsTo

rab

RCAB

FROM TO

A‘ B‘

instance of

subclass of subclass of

39ADOxx® Tutorial © BOC Group | boc@boc-group.com

Relation Types: Inheritance of InterRef

b‘a‘

Model

B
(�B)

A
TO

Metamodel

instance of

instance of

A‘ B‘

subclass of subclass of

InterRefAB

(�B)

TO

InterRefAB

Inherits attribute

(�B)

TO

InterRefAB

conformsTo

40ADOxx® Tutorial © BOC Group | boc@boc-group.com

Realisation of Meta Model

Specification of a meta model in ALL

1. Specify the meta model starting from the „Empty Meta Model“ and add relation classes and

interrefs to classes etc. with ALL using a text editor.

2. Translate ALL into the ADOxx® interpretable ABL format and import the meta model into

ADOxx®.
relationclass : relationclass-definition { instanceattribute } |

redefrelationclass-definition { redefinstanceattribute } .

relationclass-definition : RELATIONCLASS identifier FROM identifier TO identifier .

instanceattribute-definition : ATTRIBUTE identifier TYPE typeidentifier |

ATTRIBUTE identifier TYPE typeidentifier VALUE val |
ATTRIBUTE identifier VALUE val |
ATTRIBUTE identifier TYPE RECORD .

instanceattribute-setting : ATTRIBUTE identifier VALUE val .

typeidentifier : INTEGER |
DOUBLE |

INTERREF |

EXPRESSION |

. . .

Implementation of a meta model in ADOxx® Development Environment

1. Specify the meta model starting from the „Empty Meta Model“ and add relation classes and

interrefs to classes etc. by using the functionality of the development environment

2. Save the meta model.

41ADOxx® Tutorial © BOC Group | boc@boc-group.com

1. CLASSES and RELATIONS

HANDS-ON

42ADOxx® Tutorial © BOC Group | boc@boc-group.com

Definition of Relation Classes

� Add two new relation classes to

connect classes

� Click “New” -> “New relation class”

� Name new relation class

� Define from-class

� Define to-class

43ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. CLASS ATTRIBUTE &

ATTRIBUTE

44ADOxx® Tutorial © BOC Group | boc@boc-group.com

Definitions: Data Object Model 1

� A Facet has exactly three properties: a name, a type and a value. Every one of these

three properties is saved in one slot. Possible facet types are STRING, INTEGER and

DOUBLE.

� Attributes define certain properties of classes or relationclasses. Every attribute

consists of at least three facets: a namefacet (name: "Name", type: STRING, value:

"..."), a type facet (name: "Type", type: INTEGER, value: [STRING, INTEGER,

DOUBLE, LONGSTRING, DISTRIBUTION, EXPRESSION, TIME, ENUMERATION,

ENUMERATIONLIST, PROGRAMCALL, INTERREF, RECORD,

PROFILEREFERENCE]) and one valuefacet (name: "Value", type: [STRING,

INTEGER, DOUBLE, RECORD], value: "...").

� Every attribute has an additional facet called "AttributeHelpText" which contains user

help. Depending on the type of the attribute, additional facets may be defined.

� Attributes can be either class or instance attributes. Class attributes receive one value

for every class. Instance attributes receive one value of each instance or relation.

� A Class derived from another class is called subclass and inherits all attributes that

are defined in the class from which it is derived. A class from which other classes are

derived is called superclass. Relationclasses (or just relations) can not be inherited.

Relations are always defined between exactly two classes: one source and one target

class.

45ADOxx® Tutorial © BOC Group | boc@boc-group.com

Definitions: Data Object Model 2

Every object is identified by a unique id. The following chart
shows the relations between different objects, used to define
concepts like class, relation, instance, attribute ...

46ADOxx® Tutorial © BOC Group | boc@boc-group.com

Basic: Definition of Attributes

� Attributes for classes and relation classes have to be defined in the definition section of the

class/relation class with 'TYPE'.

� The following attribute types are possible:

� INTEGER integer

� DOUBLE floating number

� STRING string – max. 3699 symbols

� LONGSTRING string – max. 32000 symbols

� TIME time (since ADONIS 3.6)

� DATE date (since ADONIS 3.6)

� DATETIME date and time

� ENUMERATION enumeration for selecting a characteristic

� ENUMERATIONLIST enumeration for selecting one or several characteristics

� DISTRIBUTION statistical distribution

� PROGRAMCALL enumeration for selecting a program

� RECORD a table of attributes

� EXPRESSION a formula

� INTERREF reference on a model or an instance

� ATTRPROFREF a preset set of attribuite values

47ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

48ADOxx® Tutorial © BOC Group | boc@boc-group.com

Basics: Selected Special Attributes

The following class attributes can be customized:

� AttrRep*: Notebook-Definition (all classes)

� GraphRep*: Graphical representation (object- and relation classes)

� Model pointer*: Relations to other models (object classes)

� Class cardinality*: Relation constraints (object classes)

� __Conversion__X: Conversion from one object to another

*are class attributes from Root Class (D|S_Construct) hence inherited by each class
X any class can define this class attribute

49ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

GRAPHREP

50ADOxx® Tutorial © BOC Group | boc@boc-group.com

Basics: Graphical Notation of Classes

Static Notation:

� Semiotic Clarity

� Perceptual Discriminability

� Semantic Transparency

� Complexity Management

� Cognitive Integration

� Visual Expressiveness

� Dual Coding

� Graphic Economy

� Cognitive Fitness

Dynamic Notation:

� Event based changes of notations (e.g. attribute change)

Reference

51ADOxx® Tutorial © BOC Group | boc@boc-group.com

GRAPHREP I
� Class attribute GRAPHREP is of type long string, hence the attribute value is a text that is

interpreted as a script by the GRAPHREP interpreter.

� The following types of elements are distinguished:
� Style elements

� Shape elements

� Variable assigning elements

� Context elements

� Control elements

� The representation characteristic for following shape elements is modified by style

elements:
� PEN sets the characteristics of the outline pen for shape elements.

� FILL sets the characteristics of the fill-in brush for shape elements.

� SHADOW switches the additional shadow of shape elements on or off

� STRETCH switches geometric stretching on or off

� FONT sets the font for displayed texts and attribute values.

� PEN determines in which manner the lines and curves are drawn, i.e. how strong, in which

color and in which style (e.g. dashed line). For shape elements which can be filled, only the

outline of the shape is influenced by the current pen. The filling of shapes is controlled by

the current fill-in brush, which can be set with BRUSH.

� Shape elements which can not be filled are POINT, LINE, POLYLINE, ARC and CURVE.

Fillable elements are RECTANGLE, POLYGON, ELLIPSE, PIE and COMPOUND.

� For shape elements coordinates (positions) have to be specified. Coordinates here are

relative to the position of the particular object, i.e. they are added to the object's position.

52ADOxx® Tutorial © BOC Group | boc@boc-group.com

GRAPHREP II

� Context elements just exist for relations. They specify whether the starting, the middle or the

endpoint of the relation is being defined. Keyword "START" defines that the following

description refers to the start point of the relation until the next context element

START/MIDDLE/END is specified. A fourth context element (EDGE) triggers the drawing of

a relation's edge. This is the line from the starting point via possible bendpoints to the end

point of a relation.

� For relations the starting, the middle and the end (point) can be defined. Positions then refer

to one of these three points. However, the coordinate system is rotated depending on the

direction of the relation instance. On defining a relation's GraphRep, you have to regard the

relation as going horizontally from the left to the right. The coordinate system's origin then is

the point of the relation for which the graphical representation currently is being defined, i.e.

start, middle or end point.

53ADOxx® Tutorial © BOC Group | boc@boc-group.com

GRAPHREP III

� On the x-axis the coordinate values increase from the left to the right, on the y-

axis they increase from top to bottom (differing from mathematics). Arcs and

pies are rotated counter-clockwise.

� ATTENTION: The unit of measure for positions and proportions (cm or pt) has

to be specified in every case. Pixel values cannot be used.

� On the drawing of an object, the elements are processed sequentially. However,

the control elements make it possible to skip sections during the element

processing depending on variables. For example, attribute values of the object

to be represented may be assigned to such variables. A graphical

representation depending on object attributes can thus be obtained using

variable assignment elements combined with control elements. Additional

possibilities are given from using variables in graphical elements.

54ADOxx® Tutorial © BOC Group | boc@boc-group.com

GRAPHREP IV

Graph Elements

For detailed explanation see online support for each of the elements

55ADOxx® Tutorial © BOC Group | boc@boc-group.com

Some GraphRep-Commands (1)

� GRAPHREP

� The GraphRep definition must start with this command to be valid. The parameter layer defines whether

an object will be displayed above or below other objects. The parameter sizing specifies if the size can

be changed.

� SHADOW

� Specifies if the class will have a shadow or if it should be drawn “flat”.

� PEN

� Defines the pens width/color/style.

� FILL

� Defines the fill color/style and transparency.

� ATTR

� Shows an attribute value on the drawing area (e.g. object name).

56ADOxx® Tutorial © BOC Group | boc@boc-group.com

Some GraphRep-Commands (2)

� POINT

� Draws a point.

� LINE / POLYLINE

� Draws a single line (LINE) or several lines (POLYLINE).

� CURVE / ARC

� Draws a curve according to a mathematical function or an arc.

� POLYGON

� Draws a polygon consisting of several straight lines where each corner is defined as a single point.

� RECTANGLE / ROUNDRECT / ELLIPSE / PIE

� A rectangle, rectangle with rounded edges, an ellipse or a segment of an ellipse.

� COMPOUND

� A composite filled Form (from LINE, POLYLINE und CURVE-Elements).

57ADOxx® Tutorial © BOC Group | boc@boc-group.com

Some GraphRep-Commands (3)

� TEXT

� Allows to show a specific text on the drawing area (Letters, Symbols …).

� FONT

� Defines the font style/color for drawn text.

� BITMAP

� Allows to embed a picture (*.BMP-Format).

� TABLE

� Creates a table for structuring the attribute representation of an object.

Hint:

Graphical elements can be combined for more complex drawing!

Hint:Hint:

Graphical elements can be combined for more complex drawing!

58ADOxx® Tutorial © BOC Group | boc@boc-group.com

The GraphRep Coordinate Plane

� A coordinate plane is used to provide an exact positioning of the GraphRep elements. It is

composed of:

� The null coordinate is in the middle

� Positive values go to the right and down

� Negative values go to the left and up

Hint:

� It is required to specify the Unit (cm or pt). Units in pixels are not possible.

� The direction of rotation progresses counter-clockwise!

Hint:Hint:

� It is required to specify the Unit (cm or pt). Units in pixels are not possible.

� The direction of rotation progresses counter-clockwise!

59ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Structural Commands

� SET
� Sets a variable with a constant or the result of an expression, which in turn can contain variables.

� AVAL
� Sets variables with the values from an attribute of the instantiated object.

� IF / ELSIF / ELSE / ENDIF
� Allows to change the representation based on values.

� BITMAPINFO
� Reads the height and width of a bitmap file, allowing to properly represent it.

� TEXTBOX / ATTRBOX
� Similar to TEXT and ATTR. However instead of drawing the values it sets specific variables with the

rectangle area they would need.

60ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

GRAPHREP

HANDS-ON

61ADOxx® Tutorial © BOC Group | boc@boc-group.com

POLYGON with 7

corners

x1:1.5cm

y1:0cm

x2:0.5cm

y2:-1cm

x3:0.5cm

y3:-0.5cm

x4:-1.5cm

y4:-0.5cm

x5:-1.5cm

y5:0.5cm

x6:0.5cm

y6:0.5cm

x7:0.5cm

y7:1cm

NEGATIVE POSITIVE

NEGATIVE

POSITIVE

GraphRep Example Workflow

GRAPHREP Preparation for Class

“I”

OBJECT NAME

62ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Example Workflow

GRAPHREP Implementation for Class

“I”

1. Since this class is concrete, a

graphical representation needs to be

defined.

2. Use inherited class attribute

“GraphRep” to define the graphical

representation

3. Write GRAPHREP code to provide a

notation for the class

63ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commented GraphRep Code

Class: I

GRAPHREP

FILL color:royalblue

POLYGON 7 x1:1.5cm y1:0cm x2:0.5cm
y2:-1cm x3:0.5cm y3:-0.5cm x4:-1.5cm
y4:-0.5cm x5:-1.5cm y5:0.5cm
x6:0.5cm y6:0.5cm x7:0.5cm y7:1cm

ATTR "Name" y:1.4cm w:c h:c In case attribute name is
available, it is shown here

64ADOxx® Tutorial © BOC Group | boc@boc-group.com

NEGATIVE POSITIVE

NEGATIVE

POSITIVE

OBJECT NAME

x:1.5cm

y:0cm

x:-1.5cm

y:0cm

x:0cm

y:-1cm

x:0cm

y:1cm

GraphRep Example Workflow

GRAPHREP Preparation for Class

“H”

65ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Example Workflow

GRAPHREP Implementation for Class

“H”

1. Since this class is concrete, a

graphical representation needs to be

defined.

2. Use inherited class attribute

“GraphRep” to define the graphical

representation

3. Write GRAPHREP code to provide a

notation for the class

66ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commented GraphRep Code: H
GRAPHREP

#Container Rectangle

RECTANGLE x:-1.5cm y:-0.5cm w:3cm h:1cm

#Arrow Lines

PEN style:dash

LINE x1:-0.8cm x2:0.8cm y1:-0.2cm y2:-0.2cm

LINE x1:-0.8cm x2:0.8cm y1:0.2cm y2:0.2cm

#Arrow Ends

PEN style:solid

LINE x1:-0.8cm x2:-0.6cm y1:-0.2cm y2:-0.1cm

LINE x1:-0.8cm x2:-0.6cm y1:-0.2cm y2:-0.3cm

LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.1cm

LINE x1:0.8cm x2:0.6cm y1:0.2cm y2:0.3cm

#Right actor

ELLIPSE x:1.1cm y:-0.2cm rx:0.15cm ry:0.15cm

LINE x1:1.1cm x2:1.1cm y1:-0.05cm y2:0.2cm

LINE x1:1.1cm x2:0.95cm y1:0.2cm y2:.3cm

LINE x1:1.1cm x2:1.25cm y1:0.2cm y2:.3cm

LINE x1:0.95cm x2:1.25cm

#Left actor

ELLIPSE x:-1.1cm y:-0.2cm rx:0.15cm ry:0.15cm

LINE x1:-1.1cm x2:-1.1cm y1:-0.05cm y2:0.2cm

LINE x1:-1.1cm x2:-0.95cm y1:0.2cm y2:.3cm

LINE x1:-1.1cm x2:-1.25cm y1:0.2cm y2:.3cm

LINE x1:-0.95cm x2:-1.25cm

#Attribute Representation

ATTR "Name" y:0.8cm w:c h:c

In case attribute name is
available, it is shown

here

67ADOxx® Tutorial © BOC Group | boc@boc-group.com

NEGATIVE POSITIVE

NEGATIVE

POSITIVE

x:2.5cm

y:0cm

x:-2.5cm

y:0cm

x:2.5cm

y:0cm

x:0cm

y:2.5cm

RESIZEABLE

RESIZEABLE

RESIZEABLE

RESIZEABLE

SHOW BACKGROUND IMAGE

ITALIC = FUNCTIONALITY

GraphRep Example Workflow

GRAPHREP Preparation for Class

“X”

68ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Example Workflow

GRAPHREP Implementation for Class

“X”

1. Since this class is concrete, a

graphical representation needs to be

defined.

2. Use inherited class attribute

“GraphRep” to define the graphical

representation

3. Write GRAPHREP code to provide a

notation for the class

69ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commented GraphRep Code: X

GRAPHREP sizing:asymmetrical
PEN style:dash
AVAL set-default:"" a:"External graphic"
#handling of programmcall attribute - cut out
the filename
SET e:(LEN a)
SET s:(search(a,"@",0) + 1)
SET grfk:(copy (a, s, e - s))
SET s:((LEN grfk) - 4)
SET e:((LEN grfk))
SET ext:(copy (grfk, s, e))
SET ext:(lower(ext))
TABLE w:5cm h:5cm cols:1 rows:1
RECTANGLE w:(tabw1) h:(tabh1)

IF ((ext=".bmp") OR (ext=".gif") OR
(ext=".ico") OR (ext=".jpg") OR (ext=".jpeg")
OR (ext=".png") OR (ext=".targa") OR
(ext=".tiff") OR (ext=".wbmp") OR (ext=".xpm")
)

BITMAP (grfk) w:(tabw1) h:(tabh1)
ENDIF

RESIZE

FILE HANDLING

IMAGE HANDLING

70ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commented GraphRep: hRi (uni-directional)

GRAPHREP rounded:0.05cm
SHADOW mode:off
PEN color:red w:0.02cm color:$727272

EDGE

END
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
x3:-0.2cm y3:-0.11cm

GRPHREP OF EDGE

GRAPHREP END

71ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commented GraphRep: anyRany (bi-directional)

GRAPHREP rounded:0.05cm
SHADOW mode:off
PEN color:red w:0.02cm color:$727272 style:dash

START
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
x3:-0.2cm y3:-0.11cm

EDGE

END
FILL color:red
POLYGON 3 x1:-0.2cm y1:0.11cm x2:0cm y2:0cm
x3:-0.2cm y3:-0.11cm

GRPHREP OF EDGE

GRAPHREP END

GRAPHREP START

72ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

GRAPHREP

EXAMPLES

73ADOxx® Tutorial © BOC Group | boc@boc-group.com

GRAPHREP
SHADOW off

FILL color:blue
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GRAPHREP
SHADOW off

FILL color:blue
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GRAPHREP

FILL color:blue

POLYGON 3 x1:-1cm y1:1cm x2:0cm y2:-
1cm x3:1cm y3:1cm

ATTR "Name" x:0cm y:1cm w:c

GRAPHREP

FILL color:blue

POLYGON 3 x1:-1cm y1:1cm x2:0cm y2:-
1cm x3:1cm y3:1cm

ATTR "Name" x:0cm y:1cm w:c

GraphRep Examples

Basic Forms

74ADOxx® Tutorial © BOC Group | boc@boc-group.com

GRAPHREP

FILL color:blue
POLYGON 3 x1:-1cm y1:1cm x2:0cm y2:-1cm x3:1cm

y3:1cm

FILL color:yellow
POLYGON 3 x1:-0.6cm y1:0.6cm x2:0cm y2:-0.6cm

x3:0.6cm y3:0.6cm

ATTR "Name" x:0cm y:1cm w:c

GRAPHREP

FILL color:blue
POLYGON 3 x1:-1cm y1:1cm x2:0cm y2:-1cm x3:1cm

y3:1cm

FILL color:yellow
POLYGON 3 x1:-0.6cm y1:0.6cm x2:0cm y2:-0.6cm

x3:0.6cm y3:0.6cm

ATTR "Name" x:0cm y:1cm w:c

GRAPHREP

SHADOW off

FILL color:blue
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GRAPHREP

SHADOW off

FILL color:blue
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GraphRep Examples

Combined Elements 1

75ADOxx® Tutorial © BOC Group | boc@boc-group.com

GRAPHREP
SHADOW off

FILL color:blue

PEN style:solid w:0.01cm
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

PEN style:solid w:0.1cm
POLYGON 3 x1:-0.8cm y1:0.6cm x2:0cm y2:-1cm x3:0.8c m

y3:0.6cm

FILL color:yellow
PEN style:solid w:0.01cm

ELLIPSE x:0.00cm y:0cm rx:0.5cm ry:0.5cm

PEN style:solid w:0.1cm
POLYGON 3 x1:-0.4cm y1:0.3cm x2:0cm y2:-0.4cm x3:0. 4cm

y3:0.3cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GRAPHREP
SHADOW off

FILL color:blue

PEN style:solid w:0.01cm
ELLIPSE x:0.00cm y:0cm rx:1cm ry:1cm

PEN style:solid w:0.1cm
POLYGON 3 x1:-0.8cm y1:0.6cm x2:0cm y2:-1cm x3:0.8c m

y3:0.6cm

FILL color:yellow
PEN style:solid w:0.01cm

ELLIPSE x:0.00cm y:0cm rx:0.5cm ry:0.5cm

PEN style:solid w:0.1cm
POLYGON 3 x1:-0.4cm y1:0.3cm x2:0cm y2:-0.4cm x3:0. 4cm

y3:0.3cm

ATTR "Name" x:0.00cm y:1.0cm w:c

GraphRep Examples

Combined Elements 2

76ADOxx® Tutorial © BOC Group | boc@boc-group.com

3

GRAPHREP
SHADOW off

AVAL set-default: 2 ar:"number of counts"

TEXT (ar)

FILL color:lightgray
ELLIPSE x:0.0cm y:0cm rx:(CM (ar)) ry:(CM (ar))

ATTR "number of counts" x:0.0cm y:-0.05cm w:c

ATTR "Name" x:0.00cm y:1.0cm w:c

GRAPHREP
SHADOW off

AVAL set-default: 2 ar:"number of counts"

TEXT (ar)

FILL color:lightgray
ELLIPSE x:0.0cm y:0cm rx:(CM (ar)) ry:(CM (ar))

ATTR "number of counts" x:0.0cm y:-0.05cm w:c

ATTR "Name" x:0.00cm y:1.0cm w:c

1

2

GraphRep Examples

Conditional representation - Sizing

77ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Examples:

Basic forms

GRAPHREP
PEN w:0.05cm

FILL color:yellow
POLYGON 3 x1:-.7cm y1:.7cm x2:.7cm y2:.7cm x3:0cm y 3:-.7cm

ATTR "Name" y:.8cm w:c:2.8cm h:t

GRAPHREP
PEN w:0.05cm

FILL color:yellow
POLYGON 3 x1:-.7cm y1:.7cm x2:.7cm y2:.7cm x3:0cm y 3:-.7cm

ATTR "Name" y:.8cm w:c:2.8cm h:t

GRAPHREP

PEN w:0.05cm
FILL color:dodgerblue

RECTANGLE x:-1.4cm y:-.7cm w:2.8cm h:1.4cm
ATTR "Name" y:.8cm w:c h:t

GRAPHREP

PEN w:0.05cm
FILL color:dodgerblue

RECTANGLE x:-1.4cm y:-.7cm w:2.8cm h:1.4cm
ATTR "Name" y:.8cm w:c h:t

GRAPHREP
FILL color:mediumspringgreen

ELLIPSE rx:0.70cm ry:0.70cm

ATTR "Name" y:0.8cm w:c:1.4cm h:t
FONT "Arial" h:32pt color:black

TEXT "V" y:0.13cm w:c h:c

GRAPHREP
FILL color:mediumspringgreen

ELLIPSE rx:0.70cm ry:0.70cm

ATTR "Name" y:0.8cm w:c:1.4cm h:t
FONT "Arial" h:32pt color:black

TEXT "V" y:0.13cm w:c h:c

78ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Examples:

Conditional representation (1)

GRAPHREP

AVAL col:"fontcolor"

AVAL set-default:"x" p:“referenced process"

AVAL sub:"referenced process "

AVAL i:“Sequence"

AVAL sn:“subprocessname"

FILL color:dodgerblue

PEN w:0.05cm

POLYGON 3 x1:-.7cm y1:.7cm x2:.7cm y2:.7cm x3:0cm y 3:-.7cm

SHADOW mode:off

IF (NOT LEN p)

PEN style:dot

ENDIF

LINE x1:-.4cm y1:.5cm x2:.4cm y2:.5cm

LINE x1:.1cm y1:.4cm x2:.4cm y2:.5cm

LINE x1:.1cm y1:.6cm x2:.4cm y2:.5cm

FONT color:(col)

IF (sub = "")

ATTR "Name" y:.8cm w:c:2.8cm h:t

ELSE

FONT "Arial" h:8pt bold

ATTR “referenced process" y:(texty2 + .1cm) w:c:2.8 cm h:t format:"%m"

FONT

ENDIF

GRAPHREP

AVAL col:"fontcolor"

AVAL set-default:"x" p:“referenced process"

AVAL sub:"referenced process "

AVAL i:“Sequence"

AVAL sn:“subprocessname"

FILL color:dodgerblue

PEN w:0.05cm

POLYGON 3 x1:-.7cm y1:.7cm x2:.7cm y2:.7cm x3:0cm y 3:-.7cm

SHADOW mode:off

IF (NOT LEN p)

PEN style:dot

ENDIF

LINE x1:-.4cm y1:.5cm x2:.4cm y2:.5cm

LINE x1:.1cm y1:.4cm x2:.4cm y2:.5cm

LINE x1:.1cm y1:.6cm x2:.4cm y2:.5cm

FONT color:(col)

IF (sub = "")

ATTR "Name" y:.8cm w:c:2.8cm h:t

ELSE

FONT "Arial" h:8pt bold

ATTR “referenced process" y:(texty2 + .1cm) w:c:2.8 cm h:t format:"%m"

FONT

ENDIF

Process call with /

without

a reference

Process call with /

without

a reference

79ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Examples:

Conditional representation (2)

GRAPHREP
AVAL set-default:“Modeling finished" b:"Status"

SHADOW off
FILL style:null

POLYGON 4 x1:-1.54cm y1:0.92cm x2:1.54cm y2:0.92cm

x3:1.54cm y3:-0.98cm x4:-1.54cm y4:-0.98cm
LINE x1:-1.54cm y1:-0.50cm x2:1.54cm y2:-0.50cm

IF (b = “Modeling not finished")
LINE x1:1.25cm y1:-1.5cm x2:1.25cm y2:-1.3cm

LINE x1:1.25cm y1:-1.22cm x2:1.25cm y2:-1.18cm
PEN color:red

POLYGON 3 x1:1cm y1:-1.1cm x2:1.25cm y2:-1.6cm

x3:1.50cm y3:-1.1cm
ENDIF

GRAPHREP
AVAL set-default:“Modeling finished" b:"Status"

SHADOW off
FILL style:null

POLYGON 4 x1:-1.54cm y1:0.92cm x2:1.54cm y2:0.92cm

x3:1.54cm y3:-0.98cm x4:-1.54cm y4:-0.98cm
LINE x1:-1.54cm y1:-0.50cm x2:1.54cm y2:-0.50cm

IF (b = “Modeling not finished")
LINE x1:1.25cm y1:-1.5cm x2:1.25cm y2:-1.3cm

LINE x1:1.25cm y1:-1.22cm x2:1.25cm y2:-1.18cm
PEN color:red

POLYGON 3 x1:1cm y1:-1.1cm x2:1.25cm y2:-1.6cm

x3:1.50cm y3:-1.1cm
ENDIF Condition fulfilledCondition fulfilled

Condition

not fulfilled

Condition

not fulfilled

80ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Examples:

Tables

GRAPHREP
sizing:asymmetrical

SHADOW off
PEN color:black

FILL style:null
TABLE x:-3.5cm y:-2cm w:7cm h:4cm

cols:3 rows:4
w1:1.3cm w2:50% w3:50%

h1:1cm h2:0.5cm h3:0.5cm h4:100%

GRAPHREP
sizing:asymmetrical

SHADOW off
PEN color:black

FILL style:null
TABLE x:-3.5cm y:-2cm w:7cm h:4cm

cols:3 rows:4
w1:1.3cm w2:50% w3:50%

h1:1cm h2:0.5cm h3:0.5cm h4:100%

Table with 4 rows and 3 columnsTable with 4 rows and 3 columns

Hint:

When manually changing the size of the table only the parameters having values

specified as percent will change in size. Fields with absolute values will always stay the same.

Hint:Hint:

When manually changing the size of the table only the parameters having values

specified as percent will change in size. Fields with absolute values will always stay the same.

81ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Examples:

Table borders

Tables can be drawn with or without borders. Borders are defined as lines using the corners of

the tables cells.

For instance: the top left corner of the table has the coordinate (tabx0, taby0), the top right corner

of the first cell has (tabx1, taby0) etc.

LINE x1:(tabx0) y1:(taby0) x2:(tabx3) y2:(taby0)

LINE x1:(tabx0) y1:(taby1) x2:(tabx3) y2:(taby1)
LINE x1:(tabx0) y1:(taby2) x2:(tabx3) y2:(taby2)

LINE x1:(tabx0) y1:(taby3) x2:(tabx3) y2:(taby3)
LINE x1:(tabx0) y1:(taby4) x2:(tabx3) y2:(taby4)

LINE x1:(tabx0) y1:(taby0) x2:(tabx0) y2:(taby4)

LINE x1:(tabx1) y1:(taby1) x2:(tabx1) y2:(taby3)

LINE x1:(tabx2) y1:(taby2) x2:(tabx2) y2:(taby3)
LINE x1:(tabx3) y1:(taby0) x2:(tabx3) y2:(taby4)

LINE x1:(tabx0) y1:(taby0) x2:(tabx3) y2:(taby0)

LINE x1:(tabx0) y1:(taby1) x2:(tabx3) y2:(taby1)
LINE x1:(tabx0) y1:(taby2) x2:(tabx3) y2:(taby2)

LINE x1:(tabx0) y1:(taby3) x2:(tabx3) y2:(taby3)
LINE x1:(tabx0) y1:(taby4) x2:(tabx3) y2:(taby4)

LINE x1:(tabx0) y1:(taby0) x2:(tabx0) y2:(taby4)

LINE x1:(tabx1) y1:(taby1) x2:(tabx1) y2:(taby3)

LINE x1:(tabx2) y1:(taby2) x2:(tabx2) y2:(taby3)
LINE x1:(tabx3) y1:(taby0) x2:(tabx3) y2:(taby4)

Table with 4 rows and 3 columns

only some lines are arranged

Table with 4 rows and 3 columns

only some lines are arranged

82ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Examples:

Complex, attribute dependend representations

GRAPHREP
AVAL a:"External Documentation"

PEN w:0.1cm
FILL r:200 g:200 b:200

POLYGON 4 x1:0cm y1:-1cm x2:1cm y2:0cm
x3:0cm y3:1cm x4:-1cm y4:0cm

ATTR "Name" y:1.2cm w:c:2.8cm h:t

IF (search(lower(a),"winword",0) >= 0)
PEN w:0.07cm

FILL r:0 g:255 b:255
...

IF (search(lower(a),".doc",0) >=0)

...
ENDIF

ELSIF (search(lower(a),"powerpnt",0) >= 0)

...
ENDIF

GRAPHREP
AVAL a:"External Documentation"

PEN w:0.1cm
FILL r:200 g:200 b:200

POLYGON 4 x1:0cm y1:-1cm x2:1cm y2:0cm
x3:0cm y3:1cm x4:-1cm y4:0cm

ATTR "Name" y:1.2cm w:c:2.8cm h:t

IF (search(lower(a),"winword",0) >= 0)
PEN w:0.07cm

FILL r:0 g:255 b:255
...

IF (search(lower(a),".doc",0) >=0)

...
ENDIF

ELSIF (search(lower(a),"powerpnt",0) >= 0)

...
ENDIF

Search for

Text pattern

Search for

Text pattern

Nested conditionsNested conditions

83ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Examples:

Compound representation

GRAPHREP

COMPOUND 2
LINE x1:1.0cm y1:-.7cm x2:-1.0cm y2:-.7cm

CURVE "t" f:(t) g:(-.2*sin(3.14*(t+1))+.7) from:-1 to:1

GRAPHREP

COMPOUND 2
LINE x1:1.0cm y1:-.7cm x2:-1.0cm y2:-.7cm

CURVE "t" f:(t) g:(-.2*sin(3.14*(t+1))+.7) from:-1 to:1

Start/EndpointStart/Endpoint

Verschachtelte BedingungenVerschachtelte BedingungenHint:

� The compound consists of one line and one curve.

� The endpoint of the previous element is the start point for the following.

� A connection is made automatically between to elements if necessary. (sequence is important!).

Hint:Hint:

� The compound consists of one line and one curve.

� The endpoint of the previous element is the start point for the following.

� A connection is made automatically between to elements if necessary. (sequence is important!).

LinieLinie

CurveCurve

84ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Definition for Relation Classes

� The same commands from normal classes can be used for relation classes as well. In

addition the following keywords are available:

� EDGE

� Defines the representation of the relation edge (line).

� START / MIDDLE / END

� This command defines the representation of the important edge parts. If MIDDLE is defined, then the

middle of the edge can be moved in the model.

STARTSTART ENDEND

EDGEEDGE

no MIDDLE definedno MIDDLE defined

85ADOxx® Tutorial © BOC Group | boc@boc-group.com

GraphRep Example:

Connector

GRAPHREP

PEN color:lightblue w:.08cm
EDGE start-trans:-.3cm end-trans:-.3cm

START
POLYLINE 4 x1:0cm y1:0cm x2:-.1cm y2:.18cm

x3:-.2cm y3:-.18cm x4:-.3cm y4:0cm

END
POLYLINE 3 x1:-.4cm y1:.15cm x2:0cm y2:0cm

x3:-.4cm y3:-.15cm

GRAPHREP

PEN color:lightblue w:.08cm
EDGE start-trans:-.3cm end-trans:-.3cm

START
POLYLINE 4 x1:0cm y1:0cm x2:-.1cm y2:.18cm

x3:-.2cm y3:-.18cm x4:-.3cm y4:0cm

END
POLYLINE 3 x1:-.4cm y1:.15cm x2:0cm y2:0cm

x3:-.4cm y3:-.15cm

GRAPHREP

START
FILL color:black

ELLIPSE x:-.1cm rx:.1cm ry:.1cm
END

LINE x1:-.3cm y1:.1cm x2:0cm y2:0cm
LINE x1:-.3cm y1:-.1cm x2:0cm y2:0cm

GRAPHREP

START
FILL color:black

ELLIPSE x:-.1cm rx:.1cm ry:.1cm
END

LINE x1:-.3cm y1:.1cm x2:0cm y2:0cm
LINE x1:-.3cm y1:-.1cm x2:0cm y2:0cm

A

B

86ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

ATTRREP

87ADOxx® Tutorial © BOC Group | boc@boc-group.com

Basics: AttrRep

� The class attribute „AttrRep“ controls the availability and structure of the

ADOxx®-Notebook. If it has no value then the class will have no Notebook.

� The following elements are available to define the Notebook:

� Chapter: Each Notebook must have at least one chapter to show some

attributes. Chapters of a Notebook are shown as tabs on the right side.

� Attributes: Attributes are embedded in a chapter where they should be shown.

The distribution and sequence of the attributes is also defined in the AttrRep.

� Groups: Attributes can be combined to groups inside of a chapter.

88ADOxx® Tutorial © BOC Group | boc@boc-group.com

The AttrRep-Commands

� NOTEBOOK

The Notebook-Definition must start with this command to be valid. It has no parameters.

� CHAPTER „chapterName “

Chapters can be started with this command. The chapter will have the name <chapterName> (Hint:

A command ENDCHAPTER is not necessary)

� ATTRIBUTE „ AttrName “

The attribute with the name <AttrName> will be shown in the notebook on this position. Some

attribute types also allow different parameters to adapt the actual display.

� GROUP „groupName “ / ENDGROUP

The attributes listed between GROUP and ENDGROUP will be enclosed by a group-box with the

name <groupName>

� SET_ACCESS usergroup: userGroupSpec

Attributes following this command will only be shown to the user group <userGroupSpec>. This
restriction can be revoked using „SET_ACCESS usergroup: all“

89ADOxx® Tutorial © BOC Group | boc@boc-group.com

ATTRREP

� Classattribute „AttrRep“ is of type long string, hence the text entered as value is
interpreted as configuration script of the so-called NOTEBOOK.

� Each NOTEBOOK has CHAPTERS, which contains a list of attributes that may be
grouped.

� Relations that are allowed for this class can be automatically created as an own
chapter.

� Appearance of attributes is defined by lines, dialog, control types (ctrltype), width or
format.

� Access rights per attribute can be defined.

90ADOxx® Tutorial © BOC Group | boc@boc-group.com

AttrRep Syntax Reference

91ADOxx® Tutorial © BOC Group | boc@boc-group.com

CLASSATTRIBUTE <AttrRep>
TYPE STRING

VALUE „

NOTEBOOK with-relations
CHAPTER \"Description\"

ATTR \"Name\"
ATTR \"Presentation\"

ATTR \"Description\" lines:5
ATTR \"Comment\" lines:5

ATTR \"Color\" dialog:color

"
FACET <MultiLineString>

VALUE 0

FACET <AttributeHelpText>
VALUE "„

FACET <AttributeRegularExpression>

VALUE ""

CLASSATTRIBUTE <AttrRep>
TYPE STRING

VALUE „

NOTEBOOK with-relations
CHAPTER \"Description\"

ATTR \"Name\"
ATTR \"Presentation\"

ATTR \"Description\" lines:5
ATTR \"Comment\" lines:5

ATTR \"Color\" dialog:color

"
FACET <MultiLineString>

VALUE 0

FACET <AttributeHelpText>
VALUE "„

FACET <AttributeRegularExpression>

VALUE ""

Example for a AttrRep Definition in ALL

Keyword

Attributename:
“AttrRep“ is a special attribute
which defines what other
attributes are processed by
the ADOxx® documentation
function

Value:
The string of the “AttrRep”
attributes is defined as a
“Notebook”. Therefore a
specific syntax is used.

A help text can be provided for
the attribute.

Type definition

92ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

ATTRREP

HANDS-ON

93ADOxx® Tutorial © BOC Group | boc@boc-group.com

Example Workflow AttrRep
1. Since this class is concrete, a

attribute representation needs to be

defined.

2. Use inherited class attribute

“AttrRep” to define the attribute

representation

3. Write ATTRREP code to provide a

notation for the class

94ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commented AttrRep Code

Grouping of

attributes on same

chapter

Chapter Structure

Attributes

Attribute

Representation

NOTEBOOK

CHAPTER "Definition"

ATTR "Name"

GROUP "Definition"

ATTR "Description"

ATTR "External content"

ENDGROUP

NOTEBOOK

CHAPTER "Definition"

ATTR "Name"

ATTR "Description"

CHAPTER "Dialectic Influence"

ATTR "Influencing dialectics" lines:10

NOTEBOOK

CHAPTER "Definition"

ATTR "External graphic"

95ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

CLASS

CARDINALITIES

96ADOxx® Tutorial © BOC Group | boc@boc-group.com

Class Attribute “Class cardinality”

� The class attribute „Class cardinality “ contains the cardinality definition of the current class.

The cardinality of a class describes

� the minimal/maximal number of objects of this class per model und

� the minimal/maximal number of relations of a specific type,

incoming or outgoing from the object.

� If no cardinalities are defined then there are also no restrictions for this class.

Hint:

� A validation of the class cardinality can be performed in the toolkit either

with each save or only when manually selecting the function (depending on the customizing).

� Please consult the ADOxx®-Manual volume 4 for a detailed description of the cardinality definition.

Hint:Hint:

� A validation of the class cardinality can be performed in the toolkit either

with each save or only when manually selecting the function (depending on the customizing).

� Please consult the ADOxx®-Manual volume 4 for a detailed description of the cardinality definition.

97ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commands of the Class Cardinality

� CARDINALITIES
� The cardinality definition must start with this command to be valid. It has no parameters.

� RELATION „ RelationName “
� Restricts the following commands to the relation class with the name <RelationName>.

� FROM_CLASS „Class Name“ / TO_CLASS „Class Name“
� Restricts the following commands to relations with the class of <ClassName>.

98ADOxx® Tutorial © BOC Group | boc@boc-group.com

Parameters of the Class Cardinality

� min-objects / max-objects
Specifies how many objects of a class can minimally/maximally be available in the model.

� min-relations / max-relations
Specifies the minimal/maximal number of relations which can be connected with this object from this class.

� max-outgoing / min-outgoing / max-incoming / min-
incoming

Restricts the number of allowed incomming/outgoing relations; either:

�in general or

�with a preceding RELATION command only for this relation or

�with a preceding FROM_CLASS or TO_CLASS command only for relations to these classes.

99ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

CLASS CARDINALITIES

HANDS-ON

100ADOxx® Tutorial © BOC Group | boc@boc-group.com

Class cardinality: Examples

� Only one object of the class „A" should exist per model.

� As well no connectors ra schould exist incomming to objects of class „A" and only one

connector ra maximum should exist outgoing from objects of class „A".

� The cardinalities of the class „A" have to be defined in the following way:

�

CARDINALITIES max-objects:1

RELATION „ra" max-incoming:0 max-outgoing:1

101ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

CONVERSION

102ADOxx® Tutorial © BOC Group | boc@boc-group.com

Class Attribute „__Conversion__“

The class attribute „Conversion“ defines and controls the conversion of a modeling object from

one class to another.

When converting three things happen. First a new object of the defined class is created.

Afterwards all attribute values are copied into the new object as defined in the “Conversion”

attribute. In the end the old object is deleted.

Hint:

� The possibility for the conversion must be defined manually in the

metamodel, so it can be used later in the tool.

� The modeler can access the functionality from the context menu in

the ADOxx®-BPM-Toolkit.

Hint:Hint:

� The possibility for the conversion must be defined manually in the

metamodel, so it can be used later in the tool.

� The modeler can access the functionality from the context menu in

the ADOxx®-BPM-Toolkit.

103ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commands and Parameters for Conversion

� CLASS „ ClassName “
� Specifies that an object can be converted into the target class <ClassName>. Several target classes can be

specified.

� ATTR „ AttrName “
� Defines the attributes from which the values will be copied during the conversion.

� from
� This parameter is used if values should be copied from the source object to the target object, but the

corresponding attributes have different names. from specifies the name of the source attribute.

Hint:

A detailed description of the Conversion-Grammar can be found in

the ADOxx®-Manual volume 4.

Hint:Hint:

A detailed description of the Conversion-Grammar can be found in

the ADOxx®-Manual volume 4.

104ADOxx® Tutorial © BOC Group | boc@boc-group.com

The commands and parameters for the conversion

� If you define __Conversion__ for the class „A" with

CLASS „B"

ATTR „ba1"

ATTR „ba2" from: „aa3"

� this means that

• objects of class „A" can be converted to objects of class „B",

• the aa1 is assigned from A to ba1 in B as the have the same name,

• the aa3 from A is assigned to Ba2 from B as they have different names,

105ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

CONVERSION

HANDS-ON

106ADOxx® Tutorial © BOC Group | boc@boc-group.com

Conversion example:
Instances of C->E

CLASS "E"

ATTR "Name"

ATTR "a1"

ATTR "a2"

ATTR "a3"

ATTR "a4"

ATTR "e1" from:"a1"

ATTR "e2" from:"a2"

ATTR "e3" from:"a3"

107ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

MODEL POINTER

108ADOxx® Tutorial © BOC Group | boc@boc-group.com

The class attribute „Model pointer“

The class attribute „Model pointer“ priorities one specified pointer with the ability to get from

one object in a model directly to another model.

The name of the attribute which provides the reference to another model or object is

specified in the model pointer attribute field.

ADOxx® provides a short cut with <Ctrl> + double click to follow the pointer

CLASSATTRIBUTE <Model pointer>

VALUE „ra"

ATTRIBUTE <ra>

TYPE INTERREF

FACET <MultiLineString>

VALUE 0

FACET <AttributeHelpText>

VALUE „ helptext„

FACET <AttributeInterRefDomain>

VALUE "VALUE "REFDOMAIN max:1

OBJREF

mt:\“my model type\"

c:\“my class\"

max:1 "

CLASSATTRIBUTE <Model pointer>

VALUE „ra"

ATTRIBUTE <ra>

TYPE INTERREF

FACET <MultiLineString>

VALUE 0

FACET <AttributeHelpText>

VALUE „ helptext„

FACET <AttributeInterRefDomain>

VALUE "VALUE "REFDOMAIN max:1

OBJREF

mt:\“my model type\"

c:\“my class\"

max:1 "

109ADOxx® Tutorial © BOC Group | boc@boc-group.com

2. SPECIAL CLASS ATTRIBUTE

& ATTRIBUTE

MODEL POINTER

HANDS-ON

110ADOxx® Tutorial © BOC Group | boc@boc-group.com

Model pointer: Example

111ADOxx® Tutorial © BOC Group | boc@boc-group.com

3. CLASS ATTRIBUTE &

ATTRIBUTE

112ADOxx® Tutorial © BOC Group | boc@boc-group.com

Basics: Definition of Attributes

� Attributes for classes and relation classes have to be defined in the definition section of the
class/relation class with 'TYPE'.

� The following attribute types are possible:

� INTEGER integer

� DOUBLE floating number

� STRING string – max. 3699 symbols

� LONGSTRING string – max. 32000 symbols

� TIME time (since ADONIS 3.6)

� DATE date (since ADONIS 3.6)

� DATETIME date and time

� ENUMERATION enumeration for selecting a characteristic

� ENUMERATIONLIST enumeration for selecting one or several
characteristics

� DISTRIBUTION statistical distribution

� PROGRAMCALL enumeration for selecting a program

� RECORD a table of attributes

� EXPRESSION a formula

� INTERREF reference on a model or an instance

� ATTRPROFREF a preset set of attribuite values

113ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

Numerical Attributes: Integer (INTEGER)

� An attribute of the type "Integer" is defined as an integer from -1,999,999,999 to

1,999,999,999.

� An ADOxx® integer is limited to 10 digits plus an optional sign ('+' or '-')

� The standard value of attributes of this type is "0" or a value defined

114ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their appearance

Numerical Attributes: Floating number (DOUBLE)

� The amount of decimal places is defined by the attribute definition

� An attribute of the type "Double" is defined for a float within +/-999,999,999,999,999 for an

integer (without decimal places) or +/-999,999,999.999999 for figures with 6 decimals.

� The corresponding attribute value is displayed to 6 decimal places. That means that a

double value should not exceed a total of 15 significant digits with at last 6 decimal digits!

� The standard value of attributes of this type is "0.000000" or a value defined in the

application library.

115ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

String attributes: String (STRING)

� An attribute of the type "String" is defined for texts up to 3700 characters of any type.

� Hint: The maximum number of characters is 250 for name. That concerns classes, relation, instances,

attributes, application models, libraries and application libraries.

� Model names have a special rule!

� The standard value of attributes of this type is "" (no entry) or a value defined in the

application library.

116ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

String attributes: Longstring (LONGSTRING):

� Some text attributes are already defined as „multi-line“. The parameter lines can be used to

specify how many lines should be shown in the text field of the Notebook.

� The parameter dialog can be used to specify special input supports in place of the standard

one.

� An attribute of type "Longstring" is defined for texts up to 32000 characters of any type.

� The standard value of attributes of this type is "" (no entry) or a value defined in the

application library.

117ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

Enumerations / Enumeration lists: Enumeration (ENUMERATION)

� The parameter ctrltype sets how the enumeration should appear, as a drop down list,

as radiobuttons or as checkboxes (only if two possible values).

� An attribute of the type "Enumeration" is characterised by a defined set of values. An

"Enumeration" attribute has exactly one value of this set.

� The standard value of this type is specified in the library definition.

118ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

Enumerations / Enumeration lists: Enumeration list(ENUMERATIONLIST):

� An attribute of the type "Enumeration list" is characterised by a defined set of values. An

"Enumeration list" attribute has either none, one or several values of this set. The difference

to an "Enumeration" attribute is, that an "Enumeration list" attribute can have more than one

entry selected!

� The standard value of this type must specified in the library definition.

119ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

Date / Time: Date (DATE)

The ADOxx® format for date is YYYY:MM:DD

Date / Time: Time (TIME)

The ADOxx® format time is YY:MM:DDD:HH:MM:SS

Date / Time: Date and Time (DATETIME)

The ADOxx® format time is YYYY:MM:DD HH:MM:SS

� Time format YY:DDD:HH:MM:SS (years:days:hours:minutes:seconds). Valid day ranges are

from 0 to 365, valid hours are between 0 and 23, valid minutes and valid seconds are

between 0 and 59.

� The standard value of attributes of this type is "00:000:00:00:00" or a value defined in the

application library.

120ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

References / Program calls: Intermodel reference (INTERREF)

121ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

References / Program calls: Programcall (PROGRAMCALL)

� A PROGRAMCALL attribute is characterized by a fixed set of items. These items are related

to AdoScripts which can be called via the user interface. A PROGRAMCALL attribute value

consists of at most one of the defined items and an optional parameter.

122ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

Table: Table (TABLE)

Tables will appear in Notebooks according to the defintion of the table class.

Following adjustments can be done in AttrRep of the table class:

�which columns should be shown

�in what sequence

�Relative width - Parameter width

An Attribute of Type "Table" (RECORD) is defined by a flexible List-/Table-Administration of

Attribute Types that are put together.

The standard Value for Attributes of this Type depends on the Attribute Types defined in the Table

Class.

123ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Types and their Appearance

Expressions / Attribute profile references: Expression(EXPRESSION)

� Every definition of expression attributes is started with the keyword EXPR. The result type is

is defined with the attribute type: and the default formula is defined with the attribute expr:.

Every time you create an instance (a model, object, or connector), this formula will be used

to compute the result value of the expression.

� By setting the modifier fixed:, you make the expression attribute a fixed expression. The

user will the not be able to change the formula in the Modelling Toolkit.

� The formula itself (defined in the attribute expr:) must never be longer than 3600 characters.

� For expressions with result type double, the attribute format can be used to specify the

number of digits that should be displayed on the user interface. Note: the number of digits

displayed on the user interface do not affect the internal precision of the expression result

value.

124ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Definition

attribute-definition : instanceattribute-definition |

classattribute-definition .

classattribute-definition : CLASSATTRIBUTE identifier TYPE typeidentifier |
CLASSATTRIBUTE identifier TYPE typeidentifier VALUE val |
CLASSATTRIBUTE identifier VALUE val |
CLASSATTRIBUTE identifier TYPE RECORD .

instanceattribute-definition : ATTRIBUTE identifier TYPE typeidentifier |

ATTRIBUTE identifier TYPE typeidentifier VALUE val |
ATTRIBUTE identifier VALUE val |
ATTRIBUTE identifier TYPE RECORD .

typeidentifier : INTEGER |
DOUBLE |
STRING |

DISTRIBUTION |
TIME |
ENUMERATION |

ENUMERATIONLIST |
PROGRAMCALL |
INTERREF |

EXPRESSION |
ATTRPROFREF .

125ADOxx® Tutorial © BOC Group | boc@boc-group.com

3. CLASS ATTRIBUTE

& ATTRIBUTE

HANDS-ON

126ADOxx® Tutorial © BOC Group | boc@boc-group.com

Example for an instance attribute definition

ATTRIBUTE <Description>

TYPE STRING

VALUE “ “

FACET <MultiLineString>

VALUE 1

FACET <AttributeHelpText>

VALUE “”

ATTRIBUTE <Description>

TYPE STRING

VALUE “ “

FACET <MultiLineString>

VALUE 1

FACET <AttributeHelpText>

VALUE “”

Keyword

Attributname:
The name can use alphanumeric
characters

Value:
The concrete value will be
determined by the model.

Type definition

A help text can be provided for the
attribute.

This FACET defines if a text-box can
be used.

127ADOxx® Tutorial © BOC Group | boc@boc-group.com

Example of New Attribute in ADOxx®

1. Select class

2. Right mouse click

3. Select „New Attribute“

4. Define Attribute

128ADOxx® Tutorial © BOC Group | boc@boc-group.com

Views of the class hierarchy

� Classes

All visible classes will be shown

� Relation classes

All available relation classes will be shown

� Metamodel

All classes will be shown

� Class hierarchy

All classes will be shown with their
inheritance in a hierarchy

� Attributes

The attributes of the (relation-)classes will
be shown

� Attribute types

The type of each attribute will be shown

� Source- and Target-classes

Shows the endpoints for each relation
class, i.e. between which classes it
can be used.

129ADOxx® Tutorial © BOC Group | boc@boc-group.com

Icons in ADOxx® class hierarchy management

Class (the icon shows the graphical definition of the object and can therefore vary)

Class (without a graphical definition)

Attribute

Attribute (inherited from another class)

Class attribute

Class attribute (inherited from another class)

130ADOxx® Tutorial © BOC Group | boc@boc-group.com

4. ATTRIBUTE FACETS

131ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Facets Correlation

A
tt

ri
b

u
te

N
u

m
er

ic

D
o

m
ai

n

A
tt

ri
b

u
te

R
eg

u
la

r
E

xp
re

ss
io

n

A
tt

ri
b

u
te

In
te

rr
ef

D

o
m

ai
n

E
n

u
m

er
at

io
n

D

o
m

ai
n

M
u

lt
iL

in
eS

tr
in

g

A
tt

ri
b

u
te

H
el

p

T
ex

t

R
ec

o
rd

C
la

ss

N
am

e

R
ec

o
rd

C
la

ss

M
u

lt
ip

lic
it

y

INTEGER X X

DOUBLE X X

STRING X X X

LONGSTRING X X X

TIME X

ENUMERATION X X X

ENUMERATIONLIST X X X

PROGRAMCALL X X

RECORD X X X

EXPRESSION X X

INTERREF X X

132ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Domain Definition 1

Definition

AttrDomainDef : DomainHead

{ DomainInterval }.

DomainHead : DOMAIN

message:"domainMessage".

DomainInterval : INTERVAL

lowerbound:lowerBoundValue

upperbound:upperBoundValue.

FACET <AttributeNumericDomain>

VALUE "LAYOUT decimals:2"

FACET <AttributeNumericDomain>

VALUE "LAYOUT decimals:2"

FACET <AttributeNumericDomain>

VALUE "DOMAIN

message:\"Enter a value between 0.25 (quarter of an hour) and 20.\"

INTERVAL

lowerbound:0.25

upperbound:20.0"

FACET <AttributeNumericDomain>

VALUE "DOMAIN

message:\"Enter a value between 0.25 (quarter of an hour) and 20.\"

INTERVAL

lowerbound:0.25

upperbound:20.0"

Example

133ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Domain Definition 2

Example (cont.)

FACET <AttributeNumericDomain>

VALUE "DOMAIN

message:"The valid Value Range of the Attribute lies be tween 0 and 100

and between 1000 and 1100."

INTERVAL

lowerbound:0

upperbound:100

INTERVAL

lowerbound:1000

upperbound:1100

"

FACET <AttributeNumericDomain>

VALUE "DOMAIN

message:"The valid Value Range of the Attribute lies be tween 0 and 100

and between 1000 and 1100."

INTERVAL

lowerbound:0

upperbound:100

INTERVAL

lowerbound:1000

upperbound:1100

"

134ADOxx® Tutorial © BOC Group | boc@boc-group.com

Regular Expression Definition

Definition

RegExpDef : RegExpHead.

RegExpHead : REGEXP

message:"regExpMessage"

expression:"regularExpression".

FACET <AttributeRegularExpression>

VALUE "REGEXP

message:\"Enter the time in the format MM.YYYY (Dom ain 01.1950 to 12.2050).\"

expression:\"^(0[1-9]|1[0-2])\\.(19[5-9][0-9]|20[0- 5][0-9])$\""

FACET <AttributeRegularExpression>

VALUE "REGEXP

message:\"Enter the time in the format MM.YYYY (Dom ain 01.1950 to 12.2050).\"

expression:\"^(0[1-9]|1[0-2])\\.(19[5-9][0-9]|20[0- 5][0-9])$\""

FACET <AttributeRegularExpression>

VALUE "REGEXP

message:"That is not a valid e-mail address!"

expression:".*@.*“

"

FACET <AttributeRegularExpression>

VALUE "REGEXP

message:"That is not a valid e-mail address!"

expression:".*@.*“

"

FACET <AttributeRegularExpression>

VALUE "REGEXP

message:"Input data in format 'DD.MM.YYYY'.“

expression:"^()$|^((((0[1-9]|1[0-9]|2[0-9]).(0[1-9] |10|11|12))|(30.(01|0[3-

9]|10|11|12))|(31.(„

"01|03|05|07|08|10|12))).[0-2][0-9][0-9][0-9]${10}) „

"

FACET <AttributeRegularExpression>

VALUE "REGEXP

message:"Input data in format 'DD.MM.YYYY'.“

expression:"^()$|^((((0[1-9]|1[0-9]|2[0-9]).(0[1-9] |10|11|12))|(30.(01|0[3-

9]|10|11|12))|(31.(„

"01|03|05|07|08|10|12))).[0-2][0-9][0-9][0-9]${10}) „

"

Example

135ADOxx® Tutorial © BOC Group | boc@boc-group.com

InterRef Domain Definition

Definition

InterRfDomainDef: [DomainHead]

{ ModRefDomain } |

{ InstRefDomain }.

DomainHead : REFDOMAIN

[max:totalMaxValue].

ModRefDomain : MODREF

mt:"modelTypeName"

[max:maxValue].

InstRefDomain : OBJREF

mt:"modelTypeName"

c:"className"

[max:maxValue].

FACET <AttributeInterRefDomain>

VALUE "REFDOMAIN

OBJREF

mt:“My ModelType"

c:“MyModelClass"

max:1 "

FACET <AttributeInterRefDomain>

VALUE "REFDOMAIN

OBJREF

mt:“My ModelType"

c:“MyModelClass"

max:1 "

FACET <AttributeInterRefDomain>

VALUE "REFDOMAIN max: 100

OBJREF

mt:„MyFirstModelType\"

c:“MyClassInMyFirstModelType„

max: 50

OBJREF

mt:“MySecondModelType"

c:„MyClassInMySecondModelType„

max: 50 "

FACET <AttributeInterRefDomain>

VALUE "REFDOMAIN max: 100

OBJREF

mt:„MyFirstModelType\"

c:“MyClassInMyFirstModelType„

max: 50

OBJREF

mt:“MySecondModelType"

c:„MyClassInMySecondModelType„

max: 50 "

FACET <AttributeInterRefDomain>

VALUE "REFDOMAIN max:1

MODREF

mt:\"Knowledge Management

Process Model\“ "

FACET <AttributeInterRefDomain>

VALUE "REFDOMAIN max:1

MODREF

mt:\"Knowledge Management

Process Model\“ "

Example

136ADOxx® Tutorial © BOC Group | boc@boc-group.com

Enumeration Domain Definition

Definition

ITEM itemText [param:varName:defaultText] [fdlg-

filterX:filterExt fdlg-typeX:filterName]

AdoScript .

FACET <EnumerationDomain>

VALUE “value-1@value-2@value-3@value-n"

FACET <EnumerationDomain>

VALUE “value-1@value-2@value-3@value-n"

Example

137ADOxx® Tutorial © BOC Group | boc@boc-group.com

MultiLineString Definition

Definition

The attribute-facet 'MultiLineString' (only for attributes of type STRING) specifies, whether the

text field for the string has a single line (VALUE 0) or several lines (VALUE 1).

The text field allows entering 3700 symbols maximum. In the attribute 'name' entering 255

symbols maximum is possible. A text field with more lines owns scroll-bars in the notebook and

can be enlarged to screen size 640x480 by an enlarging button.

FACET

<MultiLineString>

VALUE 0

FACET

<MultiLineString>

VALUE 0

FACET

<MultiLineString>

VALUE 1

FACET

<MultiLineString>

VALUE 1

Example

138ADOxx® Tutorial © BOC Group | boc@boc-group.com

Attribute Help Text Definition

Definition

The attribute-facet 'AttributeHelpText' defines an i-Button (on the right top of the text field),

where the info-text (defined in 'VALUE') is deposited.

FACET <AttributeHelpText>

VALUE "You can change the language from English to German and/or vice versa."

FACET <AttributeHelpText>

VALUE "You can change the language from English to German and/or vice versa."

Example

139ADOxx® Tutorial © BOC Group | boc@boc-group.com

Example for Meta-Data

Attributes can be defined and provided with a descriptive default value.

They should not be provided in the „Notebook“ to prevent the user from changing
these, making them only accessible through processing.

ATTRIBUTE <Application>

TYPE STRING

VALUE „All objects of this aggregation belong toget her and must be considered

as a grup by all functions. "

FACET <MultiLineString>

VALUE 1

FACET <AttributeHelpText>

VALUE "Enter a description for documentation purpos es."

FACET <AttributeRegularExpression>

VALUE ""

ATTRIBUTE <Application>

TYPE STRING

VALUE „All objects of this aggregation belong toget her and must be considered

as a grup by all functions. "

FACET <MultiLineString>

VALUE 1

FACET <AttributeHelpText>

VALUE "Enter a description for documentation purpos es."

FACET <AttributeRegularExpression>

VALUE ""

139

140ADOxx® Tutorial © BOC Group | boc@boc-group.com

4. ATTRIBUTE

FACETS

HANDS-ON

141ADOxx® Tutorial © BOC Group | boc@boc-group.com

Facet Notebook in Attribute-Edit Mode

1. Select class

2.Right mouse click

3. Select „Edit“

4. Define Facet

142ADOxx® Tutorial © BOC Group | boc@boc-group.com

5. MODELTYPES

143ADOxx® Tutorial © BOC Group | boc@boc-group.com

Definition of Model Types

� Model types, model type-groups and views for model types:

� A model type determines a subset of all instanciable classes and relations.

Each model has a specific model type which can not be changed afterwards.

� Model type-groups should be defined, if the application library consists of many

different model types. This allows to group and structure the available model types.

� A modus is a further restriction of a model type. It defines a subset of the

assigned classes/relations and simplifies modeling by hiding not needed classes.

The modus of a model can be changed any time unlike the model type.

143

144ADOxx® Tutorial © BOC Group | boc@boc-group.com

Definition of Model Types

� GENERAL order-of-classes: OrderOfClasses
� Defines if the sequence of the classes in the modeling tool should be taken from the meta model

(<OrderOfClasses> = „default“) or is specified for each model type explicitly („custom“).

� METHOD graphrep: „ attrName “
� Introduces a method diagram.

� GROUP „GroupName“
� Defines a group of model types with the name <GroupName>.

� graphrep: „ attrName “
� Defines a graphical representation for a method diagram. <attrName> specifies an attribute which contains

the representation using the ADOxx® GraphRep language.

144

145ADOxx® Tutorial © BOC Group | boc@boc-group.com

GENERAL order-of-classes:custom
METHOD graphRep:"Method GraphRep"

{
GROUP "Simulation"

{
MODELTYPE “My First Model Type"

MODELTYPE “My Second Model Type"

}
GROUP "All modeltypes"

{
MODELTYPE “My First Model Type"

MODELTYPE “My Second Model Type"
MODELTYPE “My Third Model Type"

MODELTYPE “My Forth Model Type"

}
}

GENERAL order-of-classes:custom
METHOD graphRep:"Method GraphRep"

{
GROUP "Simulation"

{
MODELTYPE “My First Model Type"

MODELTYPE “My Second Model Type"

}
GROUP "All modeltypes"

{
MODELTYPE “My First Model Type"

MODELTYPE “My Second Model Type"
MODELTYPE “My Third Model Type"

MODELTYPE “My Forth Model Type"

}
}

Modelling Stack with four model types, grouped into two model

type groups.

Modelling Stack with four model types, grouped into two model

type groups.

145

Definition of Model Types Sample

146ADOxx® Tutorial © BOC Group | boc@boc-group.com

Additional Commands to Define Model types
� MODELTYPE „modelTypeName “ from MTSource

� This command defines a model type <modelTypeName> and inherits all classes and relations from the
source <MTSource> (all, none or a different model type)

� plural: „ modelTypePluralName “

� Defines the plural name of a model type.

� bitmap: „ fileName “

� Defines a graphical symbol for the selection list (<fileName> = path and file name; backslashes must be

masked with an additional backslash, i.e. “\\”).

� attrrep: „ attrName “

� Provides a Notebook (defined in the library as an attribute with the name <attrName>) with model attributes

for a model type.

� INCL / EXCL

� Adds (except for all)/removes (except for none) classes and relations to the MODELTYPE.

� pos / not-simulateable

� Determines the position in list of model types / excludes the model type from simulation.

146

147ADOxx® Tutorial © BOC Group | boc@boc-group.com

Example: Model type

MODELTYPE “My First Model Type"

from:none

plural:“My First Model Types"

pos:1

not-simulateable

bitmap:"db:\\MyFirstModelType.bmp "

attrrep:“Notebook for My First Model Type"

INCL “My Class 1"

INCL "My Class 2"

INCL "My Class 3"
INCL “has relationship 1"

INCL “has relationship 2"

MODELTYPE “My First Model Type"

from:none

plural:“My First Model Types"

pos:1

not-simulateable

bitmap:"db:\\MyFirstModelType.bmp "

attrrep:“Notebook for My First Model Type"

INCL “My Class 1"

INCL "My Class 2"

INCL "My Class 3"
INCL “has relationship 1"

INCL “has relationship 2"

148ADOxx® Tutorial © BOC Group | boc@boc-group.com

Commands to define Views on Model Types

� MODE „modeName“ from: „ modeSource “
� This command defines a view modus with the name <modeName>. A list of classes/relations must be

specified (either absolute or relative as described above) together with this command. MODE can be

extended using several parameters.

� from: „ modeSource “
� Inherits all the classes and relations from the source <modeSource> (all, none or a different mode).

„all“ relates to the list from the model type (not the whole metamodel).

� no-modeling
� The defined mode is not applicable for modeling and will not be shown in the menu entry “Modi” of the

modeling component.

� no-documentation
� The defined mode is not applicable for creating a documentation.

148

149ADOxx® Tutorial © BOC Group | boc@boc-group.com

MODELTYPE „My First Model Type" from:none plural:„My First
Model Types"

pos:0 not-simulateable bitmap:"db:\\MyFirstModelType .bmp"
attrrep:“Notebook of My First ModelType"
INCL “My Class 1"
INCL "My Class 2"
INCL "My Class 3"
INCL “has relationship 1"
INCL “has relationship 2"

MODE "Standard" from:all
EXCL “My Class 3"
EXCL “has relationship 2"

MODE "Documentation" from:Standard no-modeling
INCL “My Class 3"
INCL “has relationship 2"

MODELTYPE „My First Model Type" from:none plural:„My First
Model Types"

pos:0 not-simulateable bitmap:"db:\\MyFirstModelType .bmp"
attrrep:“Notebook of My First ModelType"
INCL “My Class 1"
INCL "My Class 2"
INCL "My Class 3"
INCL “has relationship 1"
INCL “has relationship 2"

MODE "Standard" from:all
EXCL “My Class 3"
EXCL “has relationship 2"

MODE "Documentation" from:Standard no-modeling
INCL “My Class 3"
INCL “has relationship 2"

Example: Model type View

150ADOxx® Tutorial © BOC Group | boc@boc-group.com

5. MODEL

TYPES

HANDS-ON

151ADOxx® Tutorial © BOC Group | boc@boc-group.com

Definition of the ADOxx® MODI Attribute

1. Select Dynamic

Experimentation Library

2. Select the Tab Add-Ons

3. Fill the „MODI“ Attribute

152ADOxx® Tutorial © BOC Group | boc@boc-group.com

MODELLING LANGUAGE

IMPLEMENTATION ON ADOxx®

SUMMARY

153ADOxx® Tutorial © BOC Group | boc@boc-group.com

Extension of: Kühn et al. (1999a), S. 79

is subclass

1..1
0..*

1..1

1..*

is from - class

is to - class

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

has

1..* 1..1 1..* 0..*

0..1

1..n

Instanzattribut

Klasse Beziehungstyp

Metamodell

Klassenattribut Facette

Wertebereich

ModelltypSicht Entwurfsmuster

Attributprofil

...

regular
expression

... Attributfilter
Graphische Dar -

stellung („Notation“)

Attributtyp

Atomarer Typ
Zusammen-

gesetzter Typ

1..*0..*

Attribut

Metamodell-
ausschnitt

0..*

1..1

1..1
0..*

1..*

-

1..1

1..1

0..*

0..*

1..*

0..*

0..*

0..*

0..*
0..*

1..1
1..1

1..* 1..1

has

1..* 0..*

1..n

instance attribute

class relation type

metamodel

class attribute facet

value range

modeltypeview design pattern

attribute profile

...
... attribute filter graphical notation

attribute type

atomic type
composed

type

1..*0..*

attribute

metamodel
part

0..*

1..1

Meta Model of Meta Modelling Language

1

2

3

4

5

We thank you for your attention!

154ADOxx® Tutorial © BOC Group | boc@boc-group.com

In case of any questions, please contact

tutorial@adoxx.org

