
1ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

1. CLASSES and RELATIONS

2ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Class Types in ADOxx I

� Pre-defined Abstract Classes (ADOxx meta model class)

� Pre-defined abstract classes are classes that are provided by ADOxx with a given semantic and basic

syntax in form of attributes. They can be used to inherit the pre-defined syntax and the attributes to either

self-defined abstract classes or to classes.

� ADOxx functionality that is provided for the pre-defined abstract classes can be used for any inherited

concrete class. Hence pre-defined and provided ADOxx functionality is consumed due to inheritance of

such pre-defined abstract classes.

� Pre-defined abstract classes are the ADOxx meta model, hence they exist in every meta model based on

ADOxx.

� Nomenclature: __ Class Name __

3ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Class Types in ADOxx II

� Abstract Classes

� Abstract classes are self-defined classes enabling to structure the meta model and define syntax in form

of attributes and semantic, which is inherited by sub-classes.

� Abstract classes either inherit from the root class of the meta model, or from any other class of the meta

model. Hence, they inherit the behaviour from their super-class – which is often a pre-defined abstract

class from the ADOxx meta model.

� Abstract classes enable an efficient meta model, hence they may not be in every ADOxx meta model.

� Nomenclature: _ Class Name _

� (Concrete) Classes

� Classes are self-defined classes defining a concrete modelling class that can be used, when applying the

corresponding modelling language. Hence all model objects in every model created on ADOxx is an

instance of a class.

� Classes inherit the semantic and the attributes from the Pre-defined abstract class and additionally - in

case of inheriting - from the abstract class.

� Classes enable the realisation of a concrete meta model.

� Nomencladure: Class Name

4ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment " I

� __ D_Construct ___

� Super class for „graph-based“ pre-defined meta model.

� __ D_Container __

� Container class provide the relation „is-inside“, hence every object a drawn on the model having its x/y

coordinates within the drawing area of any container b has the relation a Ris-inside b.

� __D_aggregation__

� Aggregation inherits from __D_Container__, hence also provides the „is-inside“ relation and enables a

self-defined „drawing area“. E.g. resizeable rectangel.

� __D_swimmlane__

� Swimmlane inherits form __D_Container__, hence also provides the „is-inside“ relation but only enables

either rows (x=0 to x= maximum) or colums (y= 0 to y= maxium) as possible „drawing area“. E.g. three

colums one for input, one for processing, one for output

5ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment " II

� __ D_Event ___

� Event encapsolates all possible notes of a graph and distinguishes between

“D_variable_assignment_object” and “D_end”.

� __ D_end __

� The end concludes the graph and finishes state changes.

� __D_variable_assignment_objects__

� Variable assignment objects enable the change of the state. The state is stored in variables, hence each

of the following concepts have the potential to change the status of variables within a graph:

� Neutral element, start, subgraph, activity, decision, parallelity, merging

� __D_Neutral element__

� Neutral elements do not participate in executing the graph but only display references or state the status.

� __D_Start__

� Start is the starting node of the graph.

6ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment " III

� __ Subgraph ___

� Subgraph substitutes a sub-graph in the graph to make complex graphs more readable. Technically the

subgraph is a pointer to another graph.

� __ Activity__

� Activity is a node in the graph that performs the typical actions the graph is designed for. Activities are

transforming input into output.

� __Decisions__

� Decisions split the graph in several alternative paths.

� __Parallelity__

� Parallelity starts a synchronized path of a graph.

� __Merging__

� Merging ends a synchronized path of a graph.

7ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment" IV

Sample Graph

O Xa1

a2

a3

a4

a5

a6

a7XOR AND

Possible mapping of graph to ADOxx meta model

O Xa1

a2

a3

a4

a6

a7

__Start__
__Activity__

XOR

__Decision__

AND () AND

__Parallelity__ __Merge__

__End__

a5

8ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Graph-based environment" V

� __ D_variable ___

� Variables are objects that store a certain status of the graph. Hence different variables can be defined,

describing different aspects of a graph.

� __ D_random_generator __

� Random generator creates random figures that can be assigned to variables. This is used for simulation.

� __D_resources__

� Resources are properties of graph-nodes represented in an own class hierarchy. Hence descriptive

properties need not only be defined as attributes of graph nodes but can be described as classes using

class hierarchy from resources.

9ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ADOxx D-Meta Model

I
H

G

ADOxx Library Language (ALL)

__D_container__

__D_Construct__

__D_aggregation__

__D_event__ __D_variable__ __D_random generator__

__LibraryMetaData__

__D_end__

__ Neutral element __ __ Decision __ __ Parallelity __ __ Merging __

Sample – Meta Model

Inheritance of a sample

meta model

X

__D_variable_assignment_object__

__ Activity __

A B

__D_agent__ __D_resource__

W

__ Start __

__D_swimmlane__

DC

E
E

V

X … as a container class

G … as an abstract class

H … as a modelling class

I … as a flow class

__ Subgraph __

Included in tutorial library

To be implemented in

tutorial

10ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Selected Pre-defined ADOxx classes for a "Tree-based environment"

� __ S_Construct ___

� Super class for „hierarchy” pre-defined meta model.

� __S_Group__

� Group is a tree node

� __ S_Container __, __S_aggregation__, __S_swimmlane__

� Is a special form of a tree-node, same as in __D_Container__

� __S_resource__

� Resources are properties of tree-nodes represented in an own class hierarchy. Hence descriptive

properties need not only be defined as attributes of tree nodes but can be described as classes using

class hierarchy from resources.

� __S_person__

� In case persons are represented a special class is reserved for implementing person depending

behaviour (privacy etc.).

11ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

ADOxx S-Meta Model

11

S
Z

ADOxx Library Language (ALL)

__S_container__

__S_Construct__

__S_aggregation__ __S_swimmlane__

__D_agent____S_group__ __S_person__

Sample – Meta Model

Inheritance of a sample

meta model

Y

__S_resource__

T Result-of-Count

Included in tutorial library

To be implemented in

tutorial

S … as a resource class

Y … as a container class

H … as a modelling class

Z … as a class derived from T

12ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Realisation of Meta Model

Specification of a meta model in ALL

1. Specify the meta model starting from the „Empty Meta Model“ and add classes etc. with ALL

using a text editor. Abstract class is defined by the classattribute isabstract.

2. Translate ALL into the ADOxx interpretable ABL format and import the meta model into

ADOxx.

class : class-definition { attribute } |

redefclass-definition { redefattribute } .

class-definition : CLASS identifier ':' identifier .

classattribute-definition : CLASSATTRIBUTE identifier TYPE typeidentifier |
CLASSATTRIBUTE identifier TYPE typeidentifier VALUE val |
CLASSATTRIBUTE identifier VALUE val |
CLASSATTRIBUTE identifier TYPE RECORD .

13ADOxx® Training Version 1.1© BOC Group | tutorial@adoxx.org

Definition of a Modeling Class

//====================================
CLASS <Aggregation> : <__BP_Aggregation__>
//====================================

//--- Class <Aggregation> - Class attributes-

//--- Class <Aggregation> - Instance attributes-

Inheritance from a
modeling class from
the meta-model

Predefined abstract
classes

comments

Keyword

