

www.cloudsocket.eu

FINAL CLOUDSOCKET
ARCHITECTURE

D4.5

Editor Name Robert Woitsch (BOC)

Submission Date September 30, 2016

Version 1.0

State FINAL

Confidentially Level PU

Co-funded by the Horizon 2020

Framework Programme of the European Union

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 2 of 184

EXECUTIVE SUMMARY

This document introduces the final CloudSocket architecture that consists of loosely coupled, exchangeable and

partly optional environments. The BPaaS Environments that supports the BPaaS lifecyle are: (a) the BPaaS Design

Environment, (b) the BPaaS Allocation Environment, (c) the BPaaS Execution Environment, and (d) the BPaaS

Evaluation Environment. Additionally, (e) the BPaaS Marketplace is required to enable the customer to buy the

BPaaS.

Each environment is defined by a set of functional capabilities and a data exchange format to facilitate the exchange

of environments with similar solutions and hence introduce flexibility into the architecture, which enables resizing

CloudSocket to fit the CloudSocket Brokers’ needs as well as avoiding any vendor lock. In addition to the basic set of

functional capabilities offered, each environment may exploit innovative research functionality, originating from WP3,

which can provide added value (e.g., introduction of semantics to automate the business process to workflow

mapping). As such, such functionality can be considered as either an add-on to the existing capabilities or can be

adopted and incorporated into them.

The BPaaS Design Environment introduces the user interface to design domain specific business processes, to

perform the semantic lifting and process analysis of those processes as well as to specify an executable workflow.

High level deployment rules can be expressed as decisions in DMN or by expressing cases. Semantic annotations

are partly expressed in extensions of business process models and partly as ontologies. Key Performance Indicators

(KPIs) are also specified indicating high-level non-functional business requirements. All this information is packaged

in BPMN, DMN, OWL-Q and RDF format in a so-called BPaaS Design Package and handed over to the BPaaS

Allocation Environment.

The BPaaS Allocation Environment adds cloud deployment information to the resulting BPaaS Bundle and hence

introduces several deployments in a cloud environment. The workflow related BPMN part is extended with bundle

information enabling both (a) the access to already deployed (external) services as well as (b) the provisioning of

deployable packages for (internal) services. The construction of workflows in the cloud is a manual task using the

interfaces of the BPaaS Allocation Environment by manually reading the provided business process & workflow

models, decision models and semantic descriptions and by selecting appropriate cloud offerings, to hand over a

complete BPaaS Bundle in a format based on an extension of CAMEL. Such a bundle also includes information that

can drive the adaptive provisioning of the BPaaS in the form of SLO requirements (involving conditions on metrics)

and adaptation rules.

The BPaaS Execution Environment is the most complex environment comprising two major parts. First, the BPaaS

Marketplace registers and publishes the BPaaS Bundles. This Marketplace is based on a SaaS marketplace but

instead of a single step selection of a SaaS offering, it provides selection assistance, where first, the domain specific

artefacts from the business process and second the technical details are selected. Authentication, identification and

service registry are specialised facilities handled and offered by the marketplace to the other environments.

Behind the Marketplace, there lies the core functionality of the BPaaS Execution Environment incarnated via a

Workflow, Cloud Provider, Monitoring, Adaptation and SLA Engines. The Cloud Provider Engine checks if all required

services are already deployed or if a deployment on request is necessary. When the Cloud Provider Engine is

finished, it hands the workflow deployed in the production cloud over to the Workflow Engine, which creates and

executes the user instance(s) of the concrete workflow. A Monitoring Engine monitors and aggregates across clouds

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 3 of 184

and layers the BPaaS performance and hands it over to the Adaptation and SLA Engines. Cross-cloud BPaaS

reconfiguration is handled by the Adaptation Engine in the form of triggering adaptation rules. The SLA Engine

observes the measurements produced by the Monitoring Engine and assesses corresponding SLO conditions, thus

being able to follow and visualise the actual status of the SLA agreements between the BPaaS Broker and Customer.

The BPaaS Evaluation Environment draws monitoring and logging information from the Execution Environment,

semantically enhances it and stores it in the Semantic Repository. As such, such information can then be queried to

assess KPIs, or used to produce a business process intelligence knowledge in the form of best BPaaS deployments,

adaptation rule suggestions and process mining reports. All derived/analysed information is merged with business

process and key performance indicator models – a so-called model “assimilation” of log/evaluation information. This

enables the abstraction back onto the level of the domain-specific business process.

DOCUMENT HISTORY

This document is an update of the first CloudSocket architecture published as D4.1 (D4.1 2015).

For completeness reasons, the text of the original document has been used as the basis for this document and has

been updated where necessary. Hence large parts of the document are identical with the initial version D4.1.

Updates have been performed by relying on: (a) lessons learned and user feedback after completing the first

prototype, (b) gaining a more detailed understanding of novel parts during implementation as well as (c) including the

research perspective of environments after completing the initial research cycle. However, the remaining research

cycle will continue to contribute to the architecture.

The first prototypes of the individual environments have been developed, published on the CloudSocket website and

documented in the joint deliverable D4.2, D4.3, D4.4 (D4.2_4.3_4.4 2016). This joint deliverable provided a fact sheet

on the available prototypes, which has been copied into this document as chapter 2 to accompany the architecture

description with an overview where to download and how to install the various environments.

Research components that have been introduced into the final architecture are described in more detail in the

research deliverables D3.1 (D3.1 2015), D3.2 (D3.2 2016) and D3.3 (D3.3 2016). Condensed text of relevant

versions have been introduced within the corresponding environment chapters as an own section.

As most part of the text is the same as in D4.1, the contributors and reviewers have been added to the original list of

authors.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 4 of 184

PROJECT CONTEXT

Workpackage WP4: BPaaS Implementation

Task T4.1: Architecture and Design of CloudSocket

Dependencies Development of first Architecture

Contributors and Reviewers

Contributors D4.1 Reviewers D4.1

Robert Woitsch, Mehmet Albayrak, Harald Kühn, Wilfrid Utz (BOC),
Ana Juan Ferrer, Joaquin Iranzo (ATOS), Antonio Leonforte,
Antonio Gallo (FHOSTER), Vlad Mihnea, Remus Pacurar, Calin
Avasilcai, Gheorghe Arama, Roxana Boca (YMENS), Frank
Griesinger, Daniel Seybold, Jörg Domaschka (UULM), Kyriakos
Kritikos, Dimitris Plexousakis (FORTH)

Robert Woitsch (BOC), Antonio
Leonforte (FHOSTER), Frank
Griesinger (UULM), Kyriakos Kritikos
(FORTH), Vlad Mihnea, Remus
Pacurar (YMENS),

Contributors D4.5 Reviewers D4.5

Robert Woitsch (BOC), Damiano Falcioni (BOC), Wilfrid Utz (BOC),
Roman Sosa, Joaquin Iranzo (ATOS), Mihai Pavelescu (YMENS),
Simone Cacciatore, Antonio Gallo (FHOSTER), Frank Griesinger,
Daniel Seybold (UULM), Kyriakos Kritikos (FORTH), Emanuele
Laurenzi, Benjamin Lammel, Knut Hinkelmann (FHNW)

Robert Woitsch (BOC), Joaquin Iranzo
(ATOS), Mihai Pavelescu (YMENS),
Simone Cacciatore, Antonio Gallo
(FHOSTER), Frank Griesinger, Daniel
Seybold (UULM), Kyriakos Kritikos
(FORTH), Emanuele Laurenzi (FHNW)

Approved by: Joaquin Iranzo Yuste [ATOS], as WP 4 Leader

Version History

Version Date Authors Sections Affected

0.1 August 31, 2015 Robert Woitsch (BOC), Joaquin
Iranzo (ATOS)

All

0.4 September 21, 2016 all contributors Update based on lessons learned, and
WP3 results. Approval at partner meeting

0.5 September 28, 2016 Robert Woitsch (BOC), Joaquin
Iranzo (ATOS)

Compilation of Review Version

0.9 September 30, 2016 all contributors Review approval in telephone
conference.

1.0 September 28, 2016 Robert Woitsch (BOC), Joaquin
Iranzo (ATOS)

Final Approval

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 5 of 184

Copyright Statement – Restricted Content

This document does not represent the opinion of the European Community, and the European Community is not

responsible for any use that might be made of its content.

This is a restricted deliverable that is provided to the community under the license Attribution-No Derivative Works

3.0 Unported defined by creative commons http://creativecommons.org

You are free:

to share within the restricted community — to copy, distribute and transmit the work within the
restricted community

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or licensor (but not
in any way that suggests that they endorse you or your use of the work).

No Derivative Works — You may not alter, transform, or build upon this work.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.

Other Rights — In no way are any of the following rights affected by the license:

o Your fair dealing or fair use rights;

o The author's moral rights;

o Rights other persons may have either in the work itself or in how the work is used, such as publicity or
privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license terms of this work.
This is a human-readable summary of the Legal Code available online at:

http://creativecommons.org/licenses/by-nd/3.0/

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 6 of 184

TABLE OF CONTENT

1 Introduction and Problem Statement ... 15

2 First Prototype IntroduCtion .. 17

2.1 Implementation Approach ... 26

3 Architectural Paradigm .. 27

3.1 Loose coupling of Building Blocks .. 27

3.2 Model Driven and Layered Alignment Approach .. 28

3.3 Data Exchange ... 29

3.4 Interfaces .. 29

4 User Scenarios and High Level Architecture ... 30

4.1 Use Case and Stakeholder Requirements ... 30

4.1.1 Business Incubator Scenarios: A Recap .. 30

4.1.1.1 Ecological Agriculture .. 30

4.1.1.2 Green Energy .. 30

4.1.2 Cluster Process Broker Scenario: A Recap ... 31

4.1.2.1 Internet Research and Procurement Process .. 31

4.1.2.2 Kiosk Distribution Process ... 31

4.1.3 The CloudSocket Customer ... 32

4.1.4 The CloudSocket Broker .. 32

4.2 Initial High Level CloudSocket Architecture .. 34

4.2.1 Key Functional Capability of BPaaS Environments .. 35

4.2.2 Data Interaction between BPaaS Environments .. 36

4.2.2.1 BPaaS Design Package .. 36

4.2.2.2 BPaaS Meta Data .. 36

4.2.2.3 BPaaS Bundle ... 36

4.2.2.4 BPaaS Monitoring.. 37

4.2.2.5 BPaaS Finding... 37

4.2.3 BPaaS Security Layer .. 38

4.3 CloudSocket Usage Scenario ... 39

4.4 CloudSocket Ecosystem ... 42

5 BPaaS Design Environment .. 44

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 7 of 184

5.1 Introduction ... 44

5.2 Functional Capabilities ... 46

5.2.1 Business Process Design ... 47

5.2.2 Business Process Analysis .. 49

5.2.3 Semantic Lifting .. 51

5.2.4 Executable Workflow Design .. 53

5.2.5 KPI Definitions and Meta Model Completion .. 56

5.3 Components ... 58

5.3.1 User Interface Layer ... 58

5.3.2 Modelling Layer .. 59

5.3.3 Meta Model Platform Layer .. 60

5.3.4 Executable Workflow Designer .. 61

5.4 Research Contribution .. 64

5.5 Roles .. 67

5.6 Data Interface ... 68

5.6.1 BPMN Interchange ... 68

5.6.2 KPI, Meta Data and Decision Model Interchange... 68

6 BPaaS Allocation Environment ... 69

6.1 Introduction ... 69

6.1.1 Description and structure of a BPaaS Bundle .. 69

6.1.2 Creation of a BPaaS Bundle .. 72

6.1.3 Architectural overview .. 73

6.2 Functional Capabilities ... 73

6.2.1 Creation of a BPaaS Bundle .. 74

6.2.2 Atomic Service Allocation ... 76

6.2.3 Software Component Allocation ... 79

6.2.4 KPI Model Editing ... 82

6.2.5 SLA Model Editing .. 85

6.2.6 Pricing Model Editing.. 87

6.2.7 Business Process Metadata Editing ... 89

6.2.8 BPaaS Bundle Publishing in the Marketplace .. 91

6.3 Components ... 93

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 8 of 184

6.3.1 User-interface layer .. 93

6.3.1.1 Bundle Instantiator... 94

6.3.1.2 Bundle Designer .. 94

6.3.1.3 Bundle Browser ... 95

6.3.2 Business-logic layer ... 96

6.3.2.1 Bundle Repository Manager .. 96

6.3.2.2 Bundle Manager .. 97

6.3.2.3 Bundle Publisher ... 97

6.3.3 Persistency-management layer .. 98

6.3.4 Component Diagram .. 98

6.3.5 Research Prototypes .. 98

6.3.5.1 Smart Service Discovery and Composition Tools .. 98

6.3.5.2 DMN-to-CAMEL-Mapper ... 100

6.4 Roles .. 101

6.5 Data Interface ... 102

7 BPaaS Execution Environment ... 103

7.1 Introduction ... 103

7.2 Functional Capabilities ... 104

7.2.1 Deployment of BPaaS .. 104

7.2.2 Execution of the BPaaS ... 108

7.2.3 Monitoring of Agreement Status ... 113

7.2.4 Workflow Environment Management ... 116

7.3 Components ... 120

7.3.1 User Interface workspace ... 120

7.3.1.1 Web UI / Workflow-Engine .. 120

7.3.1.2 SLA Dashboard ... 120

7.3.1.3 Cloud Provider Engine Dashboard .. 121

7.3.1.4 Monitoring Dashboard ... 121

7.3.2 BPaaS Middleware ... 122

7.3.2.1 Workflow-engine .. 123

7.3.2.2 SLA Engine ... 123

7.3.2.3 Monitoring Engine.. 124

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 9 of 184

7.3.2.4 Adaptation Engine ... 125

7.3.2.5 Cloud Provider Engine ... 126

7.3.2.6 Process Data Mediator .. 127

7.3.2.7 Component Diagram ... 128

7.3.2.8 Roles ... 129

7.3.3 Data Interface ... 130

7.3.3.1 Interface to Deploy the BPaaS Bundles. ... 130

7.3.3.2 Interface to Manage Service Level Agreements .. 131

7.3.3.3 Interface to publish the monitored information. .. 131

7.3.4 Research Prototypes .. 131

8 BPaaS Marketplace ... 133

8.1 Introduction ... 133

8.2 Functional Capabilities ... 134

8.2.1 Publish BPaaS Bundle to Product Catalogue .. 134

8.2.2 Purchase BPaaS Bundle .. 136

8.2.3 Register New Customer User ... 139

8.2.4 Onboard Cloud Service Provider .. 142

8.3 Components ... 144

8.3.1 Customer UI Layer ... 144

8.3.1.1 Marketplace ... 144

8.3.1.2 Customer Portal... 144

8.3.2 Cloud Broker Engine .. 145

8.3.3 Identity Management System ... 145

8.3.4 Cloud Provider Hub .. 148

8.3.5 Repository Manager ... 148

8.3.5.1 Atomic Service Registry .. 149

8.3.5.2 Software Component Registry ... 149

8.3.5.3 Cloud Provider Registry ... 149

8.3.5.4 Component Diagram ... 150

8.4 Roles .. 151

8.5 Data Interface ... 151

9 Evaluation Environment .. 152

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 10 of 184

9.1 Introduction ... 152

9.2 Functional Capabilities ... 153

9.2.1 KPI Analysis & Visualisation ... 154

9.2.2 Derivation & Visualisation of Best Deployments and Adaptation Patterns/Rules 157

9.2.3 Process Mining Analysis & Graphical Representation ... 161

9.3 Components ... 163

9.3.1 User Interface Layer ... 163

9.3.1.1 Hybrid Business Dashboard .. 163

9.3.2 Business Logic Layer ... 164

9.3.2.1 Conceptual Analytics Engine ... 164

9.3.2.2 Process Mining Engine .. 165

9.3.3 Data Layer .. 165

9.3.4 Component Diagram .. 166

9.4 Roles .. 166

9.5 Data Interface ... 166

10 Summary and Conclusions ... 167

11 References .. 168

12 Annex .. 171

12.1 BPaaS Bundle Sending Christmas Greeting Cards .. 171

12.2 WS-Agreement Sample .. 183

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 11 of 184

LIST OF FIGURES

Figure 1 - Work item definition table .. 26

Figure 2 Initial High Level Architecture .. 34

Figure 3 BPaaS Marketplace ... 41

Figure 4 - CloudSocket ecosystem source:(D8.1 2016), p14 ... 43

Figure 5 Use Case Diagram – DE-UC-1-Business Process Design .. 48

Figure 6 Sequence Diagram – DE-UC-1-Business Process Design .. 48

Figure 7 Use Case Diagram – DE-UC-2-Business Process Analysis .. 50

Figure 8 Sequence Diagram – DE-UC-3-Business Process Analysis .. 50

Figure 9 Use Case Diagram – DE-UC-3-Semantic Lifting ... 52

Figure 10 Sequence Diagram – DE-UC-3-Semantic Lifting ... 52

Figure 11 Use Case Diagram – DE-UC-4-Executable Workflow Design ... 54

Figure 12 Sequence Diagram – DE-UC-4-Executable Workflow Design ... 55

Figure 13 Use Case Diagram – DE-UC-5-KPI Definitions and Meta Model Completion .. 57

Figure 14 Sequence Diagram – DE-UC-5-KPI Definitions and Meta Model Completion ... 57

Figure 15 BPaaS Design Environment – Domain Specific Business Process Designer User Interface Mockup 58

Figure 16 BPaaS Design Environment – Executable Workflow Designer User Interface Mockup 62

Figure 17 BPaaS Design Environment - Component Diagram .. 63

Figure 18: Overview of the BPaaS Design Environment and Smart Business IT-Cloud Alignment 64

Figure 19: Modelling Environment - Web Service Communication .. 65

Figure 20: Prototype Showing Matching Results ... 66

Figure 21 BPaaS Design Environment - Actors ... 67

Figure 22 BPaaS Bundle Elements .. 71

Figure 23 BPaaS Bundle States .. 72

Figure 24 Use Case Diagram – AE-UC-1 Creation of BPaaS Bundle.. 75

Figure 25 Sequence Diagram – AE-UC-1 Creation of BPaaS Bundle ... 75

Figure 26 Use Case Diagram – AE-UC-2-Atomic Service Allocation ... 78

Figure 27 Sequence Diagram – AE-UC-2-Atomic Service Allocation .. 78

Figure 28 Use Case Diagram – AE-UC-3-Software Component Allocation ... 81

Figure 29 Sequence Diagram – AE-UC-3-Software Component Allocation ... 81

Figure 30 Use Case Diagram – AE-UC-4-KPI Model Editing ... 83

Figure 31 Sequence Diagram – AE-UC-4-KPI Model Editing .. 84

Figure 32 Use Case Diagram – AE-UC-5-SLA Model Editing .. 86

Figure 33 Sequence Diagram – AE-UC-5-SLA Model Editing ... 86

Figure 34 Use Case Diagram – AE-UC-6-Pricing Model Editing ... 87

Figure 35 Sequence Diagram – AE-UC-6-Pricing Model Editing ... 88

Figure 36 Use Case Diagram – AE-UC-7 Business Process Metadata Editing ... 90

Figure 37 Sequence Diagram – AE-UC-7 Business Process Metadata Editing ... 90

Figure 38 Use Case Diagram – AE-UC-8-BPaaS Bundle Publishing in the Marketplace .. 92

Figure 39 Sequence Diagram – AE-UC-8-BPaaS Bundle Publishing in the Marketplace .. 92

Figure 40 BPaaS Allocation Tool – User Interface Screenshot .. 93

Figure 41 Allocation Tool – Component Diagram .. 98

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 12 of 184

Figure 42: The architecture of the Smart Service Discovery and Composition Tools .. 99

Figure 43: The architecture of the Unified Service Discovery Tool .. 100

Figure 44 - DMN-to-CAMEL-Mapper Architecture ... 101

Figure 45 Use Case Diagram – EE-UC-1-Deployment of BPaaS .. 106

Figure 46 Sequence Diagram – EE-UC-1-Deployment of BPaaS ... 107

Figure 47 Use Case Diagram – EE-UC-2 – Execution of the BPaaS... 110

Figure 48 Sequence Diagram – EE-UC-2 – Launch/Execute BPaaS instance .. 111

Figure 49 Sequence Diagram – EE-UC-2 – Reconfiguration environnement .. 112

Figure 50 Use Case Diagram – EE-UC-3 – Monitoring of Agreement Status .. 114

Figure 51 Sequence Diagram - EE-UC-3 – Monitoring of Agreement Status .. 115

Figure 52 Use Case Diagram - EE-UC-4 – Workflow Environment Management ... 118

Figure 53 Sequence Diagram – EE-UC-4 – Workflow Environment Management .. 119

Figure 54 BPaaS Execution Environment – Workflow Engine User Interface.. 120

Figure 55 BPaaS Execution Environment – SLA Monitoring Dashboard User Interface ... 121

Figure 56 BPaaS Execution Environment - Cloud Provider Engine Dashboard .. 121

Figure 57 BPaaS Execution Environment – Monitoring Dashboard User Interface Mockup 122

Figure 58 The unprocessed monitoring data in the Cloud Provider Engine Dashboard .. 122

Figure 59 BPaaS Execution Environment – Component Diagram ... 128

Figure 60 BPaaS Execution Environment – Actors .. 129

Figure 61 BPaaS Execution Environment – Interfaces .. 130

Figure 62 SLA Interface ... 131

Figure 63 Use Case Diagram – MP UC2 - Publish BPaaS Bundle to Product Catalogue ... 135

Figure 64 Sequence Diagram – MP UC2 – Publish BPaaS Bundle to Product Catalogue .. 135

Figure 65 Use Case Diagram – MP-UC2-Purchase BPaaS Bundle .. 137

Figure 66 Sequence Diagram – MP-UC2-Purchase BPaaS Bundle .. 138

Figure 67 Use Case Diagram – MP-UC3-Register New Customer User ... 140

Figure 68 Sequence Diagram – MP-UC3-Register New Customer User ... 141

Figure 69 Use Case Diagram – MP-UC-4-Onboard Cloud Service Provider ... 143

Figure 70 Sequence Diagram – MP-UC-4-Onboard Cloud Service Provider ... 143

Figure 71 - Marketplace web page. ... 144

Figure 72 Marketplace – Customer Portal – User Interface Mockup.. 145

Figure 73 BPaaS Marketplace Components .. 150

Figure 74 BPaaS Marketplace Component Interaction .. 150

Figure 75 - Deploy diagram of the Marketplace ... 151

Figure 76 Use Case Diagram – EvE-UC-1-KPI Analysis and Visualisation ... 155

Figure 77 Sequence Diagram – EvE-UC-1-KPI Analysis and Visualisation ... 156

Figure 78 Use Case Diagram – EvE-UC-2-Derivation & Visualisation of Best Deployments and Adaptation

Patterns/Rules ... 159

Figure 79 Sequence Diagram – EvE-UC-2-Derivation & Visualisation of Best Deployments and Adaptation

Patterns/Rules ... 160

Figure 80 Use Case Diagram - EvE-Uc-3-Process Mining Analysis & Graphical Representation 162

Figure 81 Sequence Diagram - EvE-Uc-3-Process Mining Analysis & Graphical Representation 162

Figure 82 BPaaS Evaluation Environment - Business Dashboard User Interface Mockup .. 164

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 13 of 184

Figure 83 BPaaS Evaluation Environment – Components ... 166

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 14 of 184

LIST OF TABLES

Table 1 – Prototype Components of Design Environment ... 17

Table 2 - Prototype Components of Allocation Environment .. 18

Table 3 - Prototype Components of Marketplace and Execution Environment .. 23

Table 4 - Components of Evaluation Environment ... 25

Table 5 BPaaS Design Environment - Use Case 1 –Business Process Design .. 48

Table 6 BPaaS Design Environment – Use Case 3 – Business Process Analysis .. 50

Table 7 BPaaS Design Environment – Use Case 3 – Semantic Lifting ... 52

Table 8 BPaaS Design Environment – Use Case 4 – Executable Workflow Design ... 55

Table 9 BPaaS Design Environment – Use Case 5 – KPI Definitions and Meta Model Completion 58

Table 10 BPaaS Allocation Environment – Use Case 1 – Creation of BPaaS Bundle ... 75

Table 11 BPaaS Allocation Environment – Use Case 2 – Atomic Service Allocation .. 78

Table 12 BPaaS Allocation Environment – Use Case 3 – Software Component Allocation .. 81

Table 13 BPaaS Allocation Environment – Use Case 4 – KPI Model Editing .. 84

Table 14 BPaaS Allocation Environment – Use Case 5 – SLA Model Editing ... 86

Table 15 BPaaS Allocation Environment – Use Case 6 – Pricing Model Editing ... 88

Table 16 BPaaS Allocation Environment – Use Case 7 – Business Process Metadata Editing 90

Table 17 BPaaS Allocation Environment – Use Case 8 – BPaaS Bundle Publishing in the Marketplace 92

Table 18 BPaaS Execution Environment – Use Case 1- Deployment of BPaaS ... 107

Table 19 BPaaS Execution Environment – Use Case 2 – Execution of the BPaaS ... 112

Table 20 BPaaS Execution Environment – Use Case 3 – Monitoring of Agreement Status 115

Table 21 BPaaS Execution Environment – Use Case 4 - Workflow Environment Management................................ 119

Table 22 BPaaS Marketplace – Use Case 1 – Publish BPaaS Bundle to Product Catalogue 135

Table 23 BPaaS Marketplace – Use Case 2 - Purchase BPaaS Bundle ... 138

Table 24 BPaaS Marketplace – Use Case 3 - Register New Customer User .. 141

Table 25 BPaaS Marketplace – Use Case 4 – Onboard Cloud Service Provider .. 143

Table 26 Identify Management Use Cases .. 147

Table 27 BPaaS Evaluation Environment – Use Case 1 - KPI Analysis and Visualisation .. 156

Table 28 BPaaS Evaluation Environment – Use Case 2 – Derivation & Visualisation of Best Deployments and

Adaptation Patterns/Rules ... 160

Table 29 BPaaS Evaluation Environment – Use Case 3 - Process Mining Analysis & Graphical Representation 162

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 15 of 184

1 INTRODUCTION AND PROBLEM STATEMENT

This document explains the CloudSocket architecture in order to.

 Create a common technical understanding and hence enable a coordinated final implementation of the

BPaaS environments that compose the co-called CloudSocket.

 Specify the functional capabilities, competencies and data interchange format of the BPaaS environments in

order to enable combining subsets of those environments for creating fixed or personalized instances of the

CloudSocket platform (the so called CloudSocket Exploitation Product Packages – see D8.1 (D8.1 2016)) or

exchanging these environments with alternative implementations.

Hence the functional capabilities, the required competencies and roles are explained per BPaaS environment to

describe their intensions and to enable the flexible implementation and packaging as well as the adaptation of the

CloudSocket platform.

A top down and bottom up approach has been applied by analysing the end users’ needs. For a better clarification

the term “CloudSocket Customer” is used to stress that use case requirements of potential future clients have been

considered, which are distinguished from the “CloudSocket Broker”, which is the one offering the BPaaS and tus

covering the use case requirements.

To collect the BPaaS Customer requirements as well as the CloudSocket Broker requirements, this document relies

on the results of the “Use Case Analysis and Evaluation Criteria Specification” (Del2.1 2015), where BPaaS customer

scenarios have been worked out. For completeness reasons, some BPaaS Customer and CloudSocket Broker

scenarios are recapped in this document, which intends to provide a complete context for the CloudSocket

architecture but does not aim to repeat those findings. To strengthen the understanding of the BPaaS Customer

context, the “Cloud Transformation Framework”, both in form of a written report (Del2.3 2015), as well as a

demonstrator providing a set of business processes (Del2.3a 2015) have been considered.

The basic idea behind the CloudSocket architecture is to use business process models in different forms to bridge

the gap from domain specific business processes to IT-cloud specific executable and deployable workflow. This

bridge is realized by a set of intermediate business process layers. The most challenging part is the separation of

those layers in: (i) domain specific business processes, (ii) executable workflows, (iii) cloud deployable workflow

bundles and (iv) workflows that are deployed and hence in production. Based on the CloudSocket terminology

(Del2.2 2015), the used standards and the described functional capabilities this document contributes to clarify the

layered approach that is applied for business and IT-cloud alignment.

In parallel to top-down analysis of BPaaS Customer and CloudSocket Broker use cases and requirements, a bottom-

up approach has been followed by providing already existing software solutions for each of the BPaaS environments

and a collaborative discussion to adapt this software to interact with the other parts. Several workshops in different

formats – moderated workshops, four corner workshop, wikis, shared document repositories including UML diagrams

and a series of Internet workshops – have been performed to agree on the first architecture for all five BPaaS

environments composing the so-called CloudSocket.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 16 of 184

The second iteration of the architecture includes lessons learned during the development of the first prototype

(D4.2_4.3_ 4.4 2016) as well as a better understanding of the use cases worked out in the set of business processes

(D5.2 2016) and BPaaS bundlesbundels (D5.2 2016). Research findings in (D3.1 2016, D3.2 2016) have been

incorporated into the corresponding BPaaS environments in the form of possible adaptations/evolutions.

The aim of the following chapters is:

 First, to provide an overview on the existing CloudSocket prototype.

 Second, to introduce the underlying architectural paradigms and principles that have been agreed and are

set as axioms for this architecture.

 Third, to supply a short recap of the use case scenarios and the expectations of BPaaS Customers and

CloudSocket Brokers.

 Fourth, to describe the different BPaaS environments by their functional capabilities, roles and data

interaction in order to enable a high level blue print for alternative implementations of the CloudSocket. This

ensures an adaptation of the five BPaaS environments to the needs and competences of a particular

CloudSocket Broker and enables to reduce complexity by focusing on one BPaaS environment at a time

and iteratively build a complete CloudSocket platform.

 Fifth, to describe each BPaaS environment in such detail that other partners can not only rely on the

functional capability, the data format and the required competencies but also enable to develop alternative

solutions or to introduce research findings within a BPaaS Environment.

The outlook indicates that the analysed architecture is expected to be further updated in the second implementation

phase of the CloudSocket prototype while updating the functionality of BPaaS environments or incorporating

research results into them.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 17 of 184

2 FIRST PROTOTYPE INTRODUCTION

The following software component description is copied from the first prototype documentation (D4.2_4.3_4.4 2016)

and contains for each environment a common factsheet to ease navigation and accessibility. Detailed contextual

information for each artefact is available in (D4.2_4.3_4.4 2016).

BPaaS Design Environment

The BPaaS Design Environment has the overall goal to model aspects of a BPaaS by focusing on higher

levels of abstraction. This leads to a generation of a BPaaS Design Package which describes an un-allocated

BPaaS at the IT/cloud level by including various types of information, such as a domain specific business

process model, an executable workflow-model, and a set of KPIs/requirements mapping to these two models.

In addition, to enable the re-use of design knowledge as well as the automatic or semi-automatic alignment

between business process and workflow models, the BPaaS Design Environment enables the storage,

querying and retrieval of all model artifacts generated and their semantic annotation.

Component Description

BPaaS Design
Tool

The BPaaS Design Tool has been created on the base of the CloudSocket metamodel and

provides the possibility to model domain-specific business processes, execution workflows,

decision models and key performance indicators.

Access SaaS Deployment: https://www.cloudsocket.eu/ADONISNP36/
(user credentials on demand)

Experimentation Version Download: https://www.adoxx.org/live/web/cloudsocket-developer-
space/downloads

License Closed source

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Design+Environment+Components

Lead Partner BOC

Table 1 – Prototype Components of Design Environment

https://www.cloudsocket.eu/ADONISNP36/
https://www.adoxx.org/live/web/cloudsocket-developer-space/downloads
https://www.adoxx.org/live/web/cloudsocket-developer-space/downloads
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Design+Environment+Components

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 18 of 184

BPaaS Allocation Environment

The goal of the BPaaS Allocation Environment is to configure allocation directives and rules for an executable

workflow model to be deployed and executed in the cloud. An executable workflow model, as produced by the

BPaaS Design Environment, does not contain information in terms of which concrete services can be exploited

to realise the functionality of the workflow tasks. The respective selection of services per workflow task is

supported by the BPaaS Allocation Environment. Similarly, driven by the same set of requirements, the same

environment can also be used to address the selection of IaaS offerings to support the deployment and

provisioning of (internal) BPaaS software components mapping to workflow tasks. Apart from these basic

allocation decisions, the BPaaS Allocation Environment covers the specification of adaptation rules that drive

the adaptation behaviour of a BPaaS as well as the specification of SLAs and marketing meta-data (e.g.,

pricing) for a certain BPaaS. In the end, the resulting product is a BPaaS bundle that can be published in the

Marketplace, purchased and subsequently deployed in the cloud..

Component Description

Allocation
Tool

It is responsible for selecting a BPaaS Design Package (previously created via the Design
Environment) and creating a BPaaS Bundle ready to be published in the Marketplace and
deployed in the Execution Environment.

Access SaaS Deployment: https://hs21.fhoster.com/cloudsocket/Allocation_prototype/Engine.jsp
(user credentials on demand)

License Proprietary

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Allocation+Environment+Components

Lead Partner FHOSTER

Table 2 - Prototype Components of Allocation Environment

https://hs21.fhoster.com/cloudsocket/Allocation_prototype/Engine.jsp
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Allocation+Environment+Components

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 19 of 184

BPaaS Marketplace and Execution Environment

The BPaaS Execution Environment deploys and executes a BPaaS bundle, once this has been purchased by

a customer at the BPaaS Marketplace. The BPaaS deployment proceeds according to the deployment plan

included in the bundle, along with additional configuration activities taken to enable the proper deployment of

the workflow into a workflow engine and of the monitoring infrastructure. Once a BPaaS is successfully

deployed, it can be run and managed by the BPaaS Customer. In addition, it is automatically monitored in a

cross-layer manner and adapted, when needed, in order to keep up with the SLOs promised in the enclosed

SLA of the BPaaS bundle.

BPaaS Marketplace

Component Description

yCONNECT
It is an online frontstore through which customers discover, analyse and purchase BPaaS

bundles by also initialising the respective BPaaS deployment in the cloud environment.

Therefore, it is responsible for linking the Allocation to the Execution Environment, giving

the client the opportunity to buy and configure the BPaaS bundles received from the

Allocation and to send the configured bundles to the Execution for provisioning.

Access SaaS Deployment: http://csmarket.ymens.com:8080/ (user credentials on demand)

License Proprietary

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Marketplace+Component

Lead Partner YMENS

http://csmarket.ymens.com:8080/
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Marketplace+Component

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 20 of 184

Repository
Manager

It is responsible for managing the information related to different entities such external
services, software components, and cloud providers. It is a transversal component allowing
the population, browsing and search of this information using standard web technologies.

Access SaaS Deployment: http://134.60.64.221/ (user credentials on demand)

Download: as docker images

 mongodb: https://hub.docker.com/_/mongo/

 restheart: https://hub.docker.com/r/softinstigate/restheart/

Restheart SchemaForm UI: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/restheart-
schemaform-ui

Registry Client Library: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/registry-client.

License GNU AGPL v3.0 (GNU 2016)

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Repository+Manager+Component

Lead Partner FHOSTER, ATOS

http://134.60.64.221/
https://hub.docker.com/_/mongo/
https://hub.docker.com/r/softinstigate/restheart/
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/restheart-schemaform-ui
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/restheart-schemaform-ui
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/registry-client
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Repository+Manager+Component

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 21 of 184

BPaaS Execution Environment

Component Description

Workflow
Engine

It is responsible for managing the deployment, execution and management of the different
workflow instances of a purchased BPaaS workflow at the execution phase.

Access http://134.60.64.132/activiti-webapp-explorer2/ (deployed as part of a bundle and user
credentials on demand)

Download Engine: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/workflow-engine.

Download Workflow Parser: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/workflow-

parser.

License Apache License Version 2.0 (Apache 2016)

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Workflow+Engine+Component

Cloud Provider
Engine

It is responsible for the complete deployment and lifecycle management of all the required
components of the BPaaS bundle, including software components and VMs across multiple
clouds, with transactional semantics (at least for the deployment part).

Access Colosseum: http://134.60.64.155:9000

Entrypoint: http://134.60.64.155:9012/job

Download: https://github.com/cloudiator/

Download EntryPoint Wrapper: https://omi-gitlab.e-technik.uni-
ulm.de/cloudsocket/execution-environment-simple-entrypoint

License Apache License Version 2.0 (Apache 2016)

Manual https://github.com/cloudiator

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Execution+Environment+Entrypoint

Lead Partner UULM

http://134.60.64.132/activiti-webapp-explorer2/
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/workflow-parser
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/workflow-parser
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Workflow+Engine+Component
http://134.60.64.155:9000/
http://134.60.64.155:9012/job
https://github.com/cloudiator/
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/execution-environment-simple-entrypoint
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/execution-environment-simple-entrypoint
https://github.com/cloudiator
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Execution+Environment+Entrypoint

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 22 of 184

Monitoring
Engine

It is responsible to monitor a BPaaS and correlate/aggregate monitoring data from different
levels, from atomic services or cloud components up to the level of workflows.

Access http://134.60.64.155:8080

Download: https://github.com/cloudiator/visor.git

License Apache License Version 2.0 (Apache 2016)

Manual https://github.com/cloudiator/visor

Lead Partner UULM, FORTH

Adaptation
Engine

It is responsible for reconfiguring the BPaaS possibly across different levels (via e.g.,
service substitution, workflow recomposition, horizontal and vertical scaling) to resolve the
problematic situations identified by triggered adaptation rules.

Access http://134.60.64.155:9000/api/composedMonitor

http://134.60.64.155:9000/api/componentHorizontalOutScalingAction

http://134.60.64.155:9000/api/componentHorizontalInScalingAction

Download: https://github.com/cloudiator/axe-aggregator

License Apache License Version 2.0 (Apache 2016)

Manual https://github.com/cloudiator/visor

Lead Partner UULM, FORTH

http://134.60.64.155:8080/
https://github.com/cloudiator/visor
http://134.60.64.155:9000/api/composedMonitor
http://134.60.64.155:9000/api/componentHorizontalOutScalingAction
http://134.60.64.155:9000/api/componentHorizontalInScalingAction
https://github.com/cloudiator/visor
https://github.com/cloudiator/visor

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 23 of 184

SLA Engine The SLA Engine represents the component responsible for generating, storing and
observing the formal documents describing electronic service level agreements (SLAs)
between the parties involved in a BPaaS offering (CloudSocket Brokerbroker, cloud service
providers supporting the BPaaS functionality), including of course the BPaaS
Customercustomer

Access SaaS Deployment for SLA Dashboard: http://134.60.64.232:8000 (user credentials on
demand)

Core SLA Engine: http://134.60.64.232:8080

Download: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/sla-framework

License Apache License Version 2.0 (Apache 2016)

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/SLA+Engine+Component

Lead Partner ATOS

Table 3 - Prototype Components of Marketplace and Execution Environment

http://134.60.64.232:8000/
http://134.60.64.232:8080/
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/sla-framework
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/SLA+Engine+Component

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 24 of 184

BPaaS Evaluation Environment

The BPaaS Evaluation Environment has the overall goal to evaluate a BPaaS in order to provide optimization

suggestions to its designer. This evaluation comes in various forms: (a) the assessment of KPIs, (b) the

derivation of best deployments for the BPaaS, (c) the production of adaptation event patterns and rules and (d)

the discovery of bottlenecks and problematic business model parts. Thus, the externally seen functionality of

the BPaaS Evaluation Environment maps to initiating the performance of analysis tasks as well as the retrieval

and graphical presentation of the various evaluation/analysis results produced according to suitable graphic

metaphors by a business dashboard.

Component Description

Semantic
Repository

A semantic repository enabling performing different types of analysis.

Access http://134.60.64.222:8080/rest-test-swagger-0.0.1-SNAPSHOT/

Download: https://github.com/openlink/virtuoso-opensource.

License GPL v2 (GPL 2016)

Manual http://docs.openlinksw.com/virtuoso/.

Lead Partner FORTH

Conceptual
Analytics

Engine

Provides an API through which KPI assessment can be performed on top of the semantic
repository

Access http://134.60.64.222:8080/rest-test-swagger-0.0.1-SNAPSHOT/

Download: https://omi-gitlab.e-technik.uni-
ulm.de/cloudsocket/evaluation_skb/repository/archive.zip?ref=master.

License Mozilla Public Licence (MPL) 2.0 (Mozilla 2016)

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Conceptual+Analytics+Engine

Lead Partner FORTH

http://134.60.64.222:8080/rest-test-swagger-0.0.1-SNAPSHOT/
https://github.com/openlink/virtuoso-opensource
http://docs.openlinksw.com/virtuoso/
http://134.60.64.222:8080/rest-test-swagger-0.0.1-SNAPSHOT/
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/evaluation_skb/repository/archive.zip?ref=master
https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/evaluation_skb/repository/archive.zip?ref=master
https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Conceptual+Analytics+Engine

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 25 of 184

Hybrid
Business

Dashboard

Enables the visualisation of the analysis information via the use of suitable metaphors.
Guides the user in properly performing the different types of analysis

Access SaaS Deployment: https://www.cloudsocket.eu/ADONISNP36/
(user credentials on demand)

License Closed source

Manual N/A

Lead Partner BOC

Table 4 - Components of Evaluation Environment

https://www.cloudsocket.eu/ADONISNP36/

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 26 of 184

2.1 Implementation Approach

The different environments are aligned with the respective tasks in WP4: i) T4.2 is responsible for the Design and

Evaluation Environment, ii) T4.4 for the Allocation Environment, and iii) T4.3 for the Marketplace and Execution

Environment. Despite the fact that these environments are independent, the project has started to integrate and align

them from the very beginning of the development phase. This allows to harmonize the different interfaces and

interactions, which have been clearly defined in D4.1 (D4.1 2016), allowing to have a complete lifecycle including all

the BPaaS (management) phases.

This approach has been incremental by following the four following steps: i) detailing the interfaces and identifying

the basic functionalities for the different environments and components; ii) performing internal testing for internal

components or between different (internal) components of the same environment; iii) inter-integration between

environment pairs; iv) final integration of all components by also covering all phases and environments.

This integration has been followed up through short periods; identifying the risk and problems as soon as possible in

order to take corrective actions, if needed. A shared excel file has been introduced to review the details of the work

items and the respective functionality realisation status and their planning, besides the dependencies and blocked

actions. Every environment has been covered by different sheets where the components report the status of their

work items. MoreoverMorover, this file also defines the different sprints and their integration at the different levels.

WP4 has realized periodic meetings every two weeks to analyse the integration, the work items per component and

to identify the new parallel discussions, such as the definition of a registry-based approach, the CAMEL

integration/extension, and the metric definition.

Figure 1 - Work item definition table

This simple approach allows to integrate the different environments even at their early stagesstates and it is

completely aligned with the Task T4.5 CloudSocket Integration and Consolidation, which will introduce more efficient

tools for managing the continuous integration for all the levels; spanning not only the development, for example a

ticketing system to cover the development, but also integration, bugs, and management of different environments

(test, integration and production).

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 27 of 184

3 ARCHITECTURAL PARADIGM

This architectural paradigm is based on the fact that each of the five environments is provided by software vendors,

who already provide at least parts of the required functional capabilities in the cloud. Hence CloudSocket improves

first the way those individual software applications are interacting as a CloudSocket platform and second by

introducing innovative extensions.

The paradigms to keep those software solutions independent ensures not only a joint solution in form of the

CloudSocket, but enables the flexible exchange and adaptation of one or several environments to the needs of a

particular CloudSocket Broker, thus ensuring individual improved solutions as a side effect.

In the following those paradigms are briefly introduced.

3.1 Loose coupling of Building Blocks

The architecture of CloudSocket comprises five environments which focus on the traditional lifecycle of business
processes involving the phases of design, allocation, execution and evaluation as well as its usage. These
environments are the following:

 BPaaS Design Environment: focuses on the design of BPaaSs

 BPaaS Allocation Environment: focuses on allocation of BPaaSs in terms of services realizing BPaaS tasks

and VMs hosting the BPaaS components

 BPaaS Execution Environment: focuses on the execution, monitoring and adaptation of BPaaS

 BPaaS Evaluation Environment: focuses on the evaluation of a BPaaS with the special goal to provide

helpful insights about how it can be optimized

 BPaaS Marketplace: focuses on the brokerage of BPaaS offerings to the customer

Each environment is autonomous and loosely coupled with respect to the other environments. This enables the

integration of different implementations of the environments in order to provide an integrated CloudSocket platform

for Brokers. It is also more suitable in cases that brokers desire to use some but not all of the environments as they

might only need to focus on particular phases in the BPaaS lifecycle or they already have tools in place which deal

with the rest of the phases.

The main functional capabilities of each environment are described to an extent sufficient for the other environments

to interface with it. This means that this document describes first a high level overview of the BPaaS environments

and second a more detailed view on the technology that acts for both: (a) a high level description of the BPaaS

environments to be possibly exchanged with other implementations as well as (b) a more detailed level of technical

description that acts as a common understanding between technical partners and specifications of interactions.

Data exchange format and APIs are described to set accordingly the way environments can interact and cooperate

with each other in a loosely coupled manner. Such a manner dictates that the least and sufficient information

pertaining to such an interaction is the specification of the API exposed by each environment and the data exchange

formats mapping to the input and output.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 28 of 184

Environments are intended to be realized by different solutions, hence a vendor lock is avoided as any solution can

be exchanged by another one that follows the same data exchange format and provides the same APIs. This is

actually the philosophy behind service-orientation as a particular system can be built or even be adapted through the

appropriate selection of services that expose the same functionality.

3.2 Model Driven and Layered Alignment Approach

At this stage, the term “business process” is introduced as a sequence of manual, semi-automatic and automatic

actions with the aim to achieve an organizational goal.

Hence the business process aligns all tasks with the business goals, independently from whether they are performed

by machines, humans or a group consisting of several machines and / or several humans. There is a set of different

application fields for business processes, such as but not limited to quality management, risk management, re-

engineering, continued improvement, documentation, training but also model driven architecture and requirement

analysis.

The first set of application fields see the business process model as an "Information Value Provider", hence graphical

models are not seen as some necessary step to move on to concrete software code, but as an independent

document that is needed for day to day work within the organization.

The second set of application fields is concerned with, the model driven architecture, software requirement analysis,

configuration of software components or software design. In those application scenarios, the business process model

is seen as a “Specification and Requirement Collection”, which is further detailed and transformed to either specific

deployable workflows or executable software code.

Business and IT alignment in CloudSocket is concerned with both; on the one side, to smartly transform and detail

business processes to become deployable workflows, and, on the other side, keep the information value aspect for

the business users.

In the following, only the relevant layers are highlighted.

 Layer I – Domain Specific Business Processes: Domain specific business processes that describe the

business activities, which are – in the way they are presented – not executable, by a workflow engine within

or even outside the cloud.

 Layer II – Executable Workflows: Executable workflows are represented by workflows that orchestrate the

interaction between software services. It is expected that one domain specific business process typically

maps to many executable workflows depending on the level of automation, the selected services and failure

/ recovery / variant handling.

 Layer III - Cloud deployable Workflow Bundles: Deployable and executable workflows that are packaged for

cloud deployment consisting of all relevant configurations, so that they can be deployed in the cloud on

demand. It is expected that one executable workflow maps typically to many cloud deployable workflow

bundles depending on the different cloud providers selected, the corresponding SLAs involved, the

deployment management strategies and the actual multi cloud deployment.

 Layer IV – Deployed Workflow Bundle in Production: This reflects a bundle that has already been deployed

in the cloud such that it can be exploited by the BPaaS Customer that has purchased it. The corresponding

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 29 of 184

workflow of the bundle is ready to be instantiated and executed. One cloud deployable workflow bundle can

map to many deployed workflow bundles in production, purchased and deployed on behalf of one or more

BPaaS Customers.

In order to align the aforementioned four layers, each layer has to be described in appropriate form. Hence, there are

two challenges to be met. First, to find appropriate representation formats for each individual layer. Second to find

appropriate mechanisms to link the different layers.

The representation format is described in the used standard data interchange of the different BPaaS environments;

the appropriate mechanisms to link different layers – as well as link different BPaaS environments will be researched

as a form of hybrid semantic and conceptual meta model integration. Details on such model weaving is represented

in D3.1 (D3.1 2016) and D3.2 (D3.2 2016).

3.3 Data Exchange

The use of standards enables the setting of the format of the data to be exchanged as well as maps to a better

integration of systems and components and the exploitation of a vast variety of alternative software that supports

these standards. CloudSocket uses standards to describe business processes, their annotations and respective rules

while extends them, when and where appropriate. For business processes representation, the widely used BPMN

standard (BPMN 2014) is exploited, which is able to support both domain specific business processes and

executable workflow models. Concerning the annotation of business processes, as we aim at providing automatic

support for various tasks operating on such processes, we opt for using ontologies. A de facto standard for the

description of ontologies is OWL (OWL 2012), so annotations will be described by this standard, or if RDF is

sufficient by using RDF (RDF 2014).

We also have the case of business rules and adaptation rules. Business rules may be specified through the DMN

standard (DMN 2015). In addition, the SRL (Scalability Rule Language) language (SRL 2015) and possible

respective extensions are foreseen to achieve the appropriate expressiveness level to support the specification of not

only scalability but any kind of adaptation rule.

Deployment plans, part of a BPaaS bundle, are already described by the CAMEL DSL (CAMEL 2015) (CloudML

2015) and in particular its part dedicated to the deployment of applications.

3.4 Interfaces

In order to keep the flexibility enabling different realizations of different BPaaS environments, the interfaces are

described on several levels. The basic interface is the file exchange realising aforementioned data structures. Of

course, a tighter interaction via service-orientation can be achieved through two different ways: (a) REST services

and (b) SOAP services. However, it is not the focus of this deliverable to explicitly indicate which way to realize a

particular interface. However, as a rule of thumb, in case that stateful operations need to be in place, then SOAP

services should be used. In case stateless operations are needed and there is a need for better performance, then

REST services should be used.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 30 of 184

4 USER SCENARIOS AND HIGH LEVEL ARCHITECTURE

This section presents how use case and stakeholder requirements have been considered together with the initial high

level architecture in order to derive usage scenarios and use cases, which are further detailed in the succeeding

sections.

4.1 Use Case and Stakeholder Requirements

The requirement analysis is described in more detail in the CloudSocket Use Case and Evaluation Criteria Analysis

(Del 2.1 2015). For completeness reasons, some major parts that are useful to raise the understanding are

introduced in the next sub-sections as a summary of the aforementioned use case analysis. These parts focus on

indicating the requirements involved for the different use cases which can of course have an effect on the design of

the CloudSocket architecture.

4.1.1 Business Incubator Scenarios: A Recap

The Business Incubator focuses on supporting the “Coaching and Finance” efforts of start-ups facilitating designing,
analysing and simulating individual business plans and processes. These aspects also demand a high degree of
adaptability of Cloud Services for Start-ups, e.g., Customer Relationship Management, Order Management, and
Human Resources Management. To this end, the following use cases have been developed for this CloudSocket
Broker, according to requirements coming from the real-world which map to ideas for creating innovative start-up
companies and how they could be supported through the CloudSocket platform.

4.1.1.1 Ecological Agriculture

A 28 year old, biologist, has an idea to take biological waste from a restaurant and stimulate a biological

decomposition process. Usually such a process takes several years but the idea of the startup is to use worm to

speed up this process.

Initial situation: The startup presented the ideas to the business incubators. After this, the consultants have discussed

with her about how to transform this business idea into a solid business model.

CloudSocket technology intervention: The startup may require a range of different customer relationship and worm

production management solutions.

Potential BPaaS solution: Business processes are a common instrument to explain, how the 28 year old biologist

prefers to perform the customer relationship and worm production management. Based on those requirements, a

mapping to either (a) already existing SaaS solutions that cover the whole business process, or (b) a combination of

different SaaS and / or local installed applications might be recommended, while (c) no Cloud support cannot also be

excluded from the suggestions supplied.

4.1.1.2 Green Energy

This startup maps to a small-scale virtual power plant which connects to a grid infrastructure with power generation

from wind, photovoltaic, and biogas. The company serves its customers with environmentally friendly energy for

household and provides smart home functions through its remote access capability for turning appliances on or off.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 31 of 184

Initial situation: The company is intending to expand its services to include mobile energy sources for recharging

electric cars and offer them for rental as range-extension for drivers, e.g., for a long weekend trip. To this end, the

startup contacted the business incubator consultants.

CloudSocket technology intervention: The startup may require a range of different process-based solutions for

customer relationship, partner management and internal management.

Potential BPaaS solution: Based on business process models, it is possible to define the expansion strategy and the

required IT (Cloud) support. Depending on those requirements, the different alternatives of Cloud support can be

worked out.

4.1.2 Cluster Process Broker Scenario: A Recap

The Business Process Broker use case identifies typical business episodes of potential SMEs in different application

domains such as eHealth, Manufacturing, Photonics, Government, Security, e-Commerce, Retails, which, however,

share a common set of business processes.

4.1.2.1 Internet Research and Procurement Process

An SME, employing 10 people, sells software and integrated appliances/electronic components that make devices

“Internet ready” in a few seconds.

Initial situation: The SME continuously verifies prices of the electronic and mechanic components in the market and

buys only products that match specific requirements in terms of customer needs and pricing. Monitoring the prices

and the quality is a costly activity, which requires an ongoing analysis and trade-off between quality and price.

CloudSocket technology intervention: The SME needs a solution that reduces the costs for procurement activities by

improving the effectiveness of the procurement process. Generic self-management infrastructure or specially

designed research processes, involving crawlers and result databases, have the potential to run in the cloud and to

raise the productivity of this SME.

Potential BPaaS solution: This is a representative sample where business processes can be used to optimize the

business of an SME, by providing consulting via business processes. Internet Recherché, the actual and current

expansion idea/solution, can be realized via many different business processes, ranging from pure manual to full

automatic, from structured to unstructured or from ad-hoc to regularly triggered processes. Different business

processes require different cloud support, ranging from no support at all, to SaaS support untill personalized

configuration of workflows.

4.1.2.2 Kiosk Distribution Process

A company with 180 employees aims at distributing newspapers and magazines to kiosk and, in general, points of

sales in an Italian town. Every day, about 250 different Italian and foreign newspapers are delivered to 600 points of

sales.

Initial situation: Current customers are small kiosks with very limited IT infrastructure. Often, the order is realised via

Facebook comments. In order to improve the maturity of the ordering and interaction process with those kiosks, new

but still light-weighted Web-applications will be provided.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 32 of 184

CloudSocket technology intervention: A new order process can be handled in the cloud, without IT installation on

both – the supplier and consumer – sides. The scaling of the application with the expected peeks in ordering at the

end of the working day or triggered by a special event indicates the use of cloud solutions.

Potential BPaaS solution: The process of ordering can reflect a better understanding of the distribution process due

to the transparent business process model by also raising awareness on IT difficulties – e.g. peek handling – and

hence improve the distribution process.

4.1.3 The CloudSocket Customer

In addition to the two aforementioned use cases – that describe the targeted end users market – we describe the

entry point of any interested user.

We propose three steps for a typical SME or startup as an end user:

 Check Cloud Readiness,

 Transform Business Processes to be executable in the Cloud,

 Enter the marketplace to access BPaaS.

The project provides a checklist for SMEs and start-ups in order to check, if they are capable in entering the cloud

with their business processes. This framework is available in the form of a demo accessible at (Del 2.3 2015) while it

is analysed in (Del 2.3a 2015).

The transformation of business processes to be executable in the Cloud is divided in two transformations. The first

transformation is a horizontal one that transforms from one business process to another one. Although both business

processes are not executable, the latter one has clear anchor points, where cloud offerings can be added. Hence the

horizontal transformation extracts those parts of the process where a cloud offering can actually be applied.

The next transformation is a vertical one that maps the resulting business process to an executable workflow in the

cloud - this actually injects the cloud offerings and enables the execution in the cloud. This next step is performed by

entering the market place and selecting the most appropriate workflow that runs in the cloud. This selection can be

supported by smart alignment mechanisms.

Readers are encouraged to visit those tools and provide feedback to enable a collaborative improvement in order to

reduce the barriers for SMEs that have no cloud competence.

It is expected that in addition to the two aforementioned CloudSocket Brokers, new brokers may be interested in

CloudSocket; hence in the following section, the entry point for new CloudSocket Brokers is provided.

4.1.4 The CloudSocket Broker

The CloudSocket is a brokerage platform with additional capabilities, where BPaaS are offered in a similar way as

SaaS are supplied today. Hence, it is a common marketplace that is well known in cloud computing. The same

mechanisms as in the case of SaaS are used for BPaaS with the main distinction that in the second case the service

offered is in the form of an “executable business process”. The differences between a SaaS and BPaaS marketplaces

concern mainly the selection criteria. A SaaS offering is typically selected based on technical properties, whereas the

BPaaS involves a two-step selection, considering first the domain/business properties and second the technical

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 33 of 184

properties. This means that for one business processes there may be many different workflow realizations, and for one

workflow realization there may be many different cloud offerings.

For organizations aiming to become a CloudSocket Broker, we propose the following steps:

 Identify the potential market for BPaaS,

 Plan Business Processes, by using a business process management tool that attracts potential clients,

 Build Business Processes, by implementing executable workflows for the first selection step and deployable

bundles for the second selection step.

 Run Business Processes, by offering workflows on an operative cloud market place infrastructure.

 Check Business Processes, by abstracting cloud monitoring logs up to domain-specific business indicators.

These initial recommended phases for supporting CloudSocket Brokers are initially realised via the use of certain tools

(CSBT 2015).

“Plan Business Processes” denotes the use of business process management tools to acquire, design, analyse and

simulate and finally release domain-specific business processes. Here, we understand business processes as a know-

how platform of an organisation; hence those processes have the potential for domain-specific consultancy and

improvement. Traditional business process management tools, such as ADONIS® (ADONIS 2015), are used.

“Build Business Processes” denotes that each of the aforementioned business processes are made executable by a

set of deployable and executable workflows. We agreed to use the term workflow for processes that are orchestrated

and executed on an IT platform to strengthen the difference with respect to human orchestrated or executed business

processes. Traditional workflow design tools like yourBPM (yourBPM 2015a, yourBPM 2015b) may be used.

“Run Business Process” indicates the provision and operation of a process as a service within a cloud market place

that is executed and run across services offered in the cloud. Although this is technically the most challenging part, the

focus of the CloudSocket project is on the alignment, hence the mapping between domain specific business processes

and cloud deployable and executable workflows.

“Checking Business Processes” indicates the abstraction, using conceptual models and semantic, to introduce a

semantic meaning into the technical data and process logs from the execution environment in the cloud. The meta

model platform ADOxx (ADOxx 2015) will be used to develop conceptual and semantic models that can be analysed

and mapped to business processes.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 34 of 184

4.2 Initial High Level CloudSocket Architecture

The initial high level CloudSocket architecture introduces the vision of BPaaS Environments that together compose

the CloudSocket platform. Each of the BPaaS Environments corresponds to a particular phase of the Business

Process Management System methodology (Kar 96), including the support for business and IT alignment. This

mapping from BPMS phases to BPaaS Environments derives an initial list of functional capabilities.

Those functional capabilities and the respective data exchanges involved are introduced in Figure 2. The BPaaS

offerings are provided to the customer via the Marketplace, whereas the BPaaS Execution Environment enables their

operation in the cloud. The conceptual challenge of bridging domain specific business processes to executable

workflows that are in production in the cloud, is performed by the others BPaaS Environments.

Figure 2 Initial High Level Architecture

In the following, an overview on the functional capabilities and the data exchange between the different BPaaS
Environments is introduced.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 35 of 184

4.2.1 Key Functional Capability of BPaaS Environments

The functionality of each BPaaS Environment focuses on a particular phase of the BPaaS lifecycle.

The BPaaS Design Environment has the overall goal to design a BPaaS. To this end, such a design should include

the capabilities to edit domain specific business process models, edit executable workflow models, store business

process models and workflows, map in a semi-automatic or automatic manner a domain specific business process

model to an executable workflow model as well as semantically annotate a business process and a workflow model.

Thus, as it can be seen, the above functionality maps to going from a domain specific need of the business process

to a formal specification of an executable workflow and supporting all types of modelling that can be involved in such

a transition. In addition, it also maps to the capability to semantically annotate the involved models in order to provide

automatic support to various tasks that might have to be performed, such as the transformation of domain specific

business process model to executable workflow models. What would someone exploit from such an environment is

the retrieval of the models that have been produced in the context of the design of a BPaaS.

The goal of the BPaaS Allocation Environment is to configure allocation directives and rules for an executable

workflow model to be deployed and executed in the cloud. An executable workflow model, as produced by the

BPaaS Design Environment, does not contain information about which concrete services can be exploited in order to

realise the functionality of the business process tasks. To this end and driven by the business and technical

requirements, the BPaaS Allocation Environment supports the CloudSocket Broker in making an informed selection

of which services from the candidate ones to select for each business process task. The same set of requirements

should also drive the decision about which IaaS offerings to select in order to deploy software components of the

BPaaS. Through both types of selection, the ending result would be not only a fully executable workflow model but

also a deployment plan which will enable the deployment of the BPaaS, thus enabling its execution by the BPaaS

Execution Environment. Another connecting piece related to a BPaaS and its deployment refers to the specification

of adaptation rules that can drive the adaptation of a BPaaS when such a need arises. Such rules are important if a

more or less constant service level needs to be exhibited by the BPaaS to its customers. Such a service level is

specified in the form of an SLA template which will be incarnated into a real SLA when the BPaaS bundle is

purchased by the BPaaS Customer. All above main products of the BPaaS Allocation Environment are encapsulated

in a so called BPaaS bundle which can then be published in the Marketplace in order to be available to the

CloudSocket Customers. Thus, similarly to the case of the previous environment, what can actually be externally

exploited by any other environment is those models that are being produced mapping to the BPaaS bundle.

The BPaaS Execution Environment aims at deploying and executing a BPaaS bundle, once this has been purchased

by a customer at the BPaaS Marketplace. Thus, this environment actually takes care of: (a) deploying the BPaaS

according to the deployment plan included in the bundle, (b) deploying the monitoring infrastructure to be used for

monitoring the BPaaS and (c) importing the respective executable workflow model into a workflow engine in order to

enable its execution by the customer that has purchased it. As such, the execution of the workflow encapsulated in

the BPaaS bundle is supported. Another goal of this environment is to support the monitoring and evaluation of the

BPaaS according to the SLOs that have been defined for it. In case of a violation of an SLO, particular adaptation

plans are executed which are triggered via the adaptation rules that have been already defined in the BPaaS bundle.

Concerning again the external functionality, as can be seen by CloudSocket Customer and the other environments,

the BPaaS Execution Environment exposes a functionality which enables deploying a BPaaS, creating, executing

and managing instances of the workflow encapsulated by the BPaaS and producing as well as supporting the

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 36 of 184

retrieval of BPaaS monitoring and assessment results (for evaluation purposes in the BPaaS Evaluation

Environment).

The BPaaS Evaluation Environment has the main goal to evaluate a BPaaS in order to provide optimisation

suggestions to its designer. This evaluation comes in various forms: (a) the assessment and drill-down of KPIs, (b)

the derivation of best deployments for the BPaaS, (c) the production of adaptation event patterns and rules and (d)

the discovery of bottlenecks and problematic business model parts. Thus, the externally seen functionality of the

BPaaS Evaluation Environment maps to performing BPaaS evaluation and retrieving the various evaluation results

produced.

4.2.2 Data Interaction between BPaaS Environments

The next sections introduce the data exchanges that are indicated in the aforementioned High Level Architecture.

4.2.2.1 BPaaS Design Package

The BPaaS Design part comprises the workflow, support information for the allocation and additional information on

the original domain specific business process.

This is a package consisting of:

 The domain specific business process and the executable workflow model in BPMN

 Business process and workflow extensions such as semantic annotations in RDF, key performance

indicators in OWL-Q and additional deployment relevant description in DMN.

4.2.2.2 BPaaS Meta Data

The BPaaS Meta Data package mainly provides optional information to any other environment.

This package provides:

 Additional domain specific business process information, such as an image and description text.

 Domain specific business process and workflow linkage

 Semantic annotation of business processes and workflows with the BPaaS ontology, which includes (i)

APQC and (ii) functional description ontology.

4.2.2.3 BPaaS Bundle

The BPaaS bundle comprises mainly the deployment information, which makes the workflow complete for production

in the BPaaS Execution Environment.

This is a package consisting of:

 Domain Specific business process - as received from the BPaaS Design Package in BPMN.

 Executable workflow models – as received from the BPaaS Design Package in BPMN - with corresponding

deployment information.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 37 of 184

 Mapping of abstract atomic services involved in the workflow with actual concrete atomic services available

in the cloud and registered in the Service Registry.

 Mapping of software components involved in the workflow with IaaS offerings registered in the Cloud

Provider Registry.

 Extending KPIs in OWL-Q and creating SLA in WS-Agreement and pricing.

 Adaptation rules in DMN and extended SRL of CAMEL to drive the BPaaS adaptation behaviour during

runtime.

4.2.2.4 BPaaS Monitoring

This package provides different kinds of – semantically enriched - monitoring information, from the BPaaS Execution

environment to the BPaaS Evaluation environment.

It consists of:

 process logs for a BPaaS,

 monitoring information for a BPaaS and

 contextual/deployment information for a BPaaS.

4.2.2.5 BPaaS Finding

This is a package providing optimisation suggestions from the BPaaS Evaluation to the BPaaS Design Environment.
It might comprise one or more from the following three main information items:

 best deployment suggestions,

 adaptation rules suggestions and

 business process model suggestions.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 38 of 184

4.2.3 BPaaS Security Layer

In the definition of the architecture, we have introduced and defined different environments that are independent,
decoupled and modular; hence the considered security solution will promote the maximum possible scenarios to
maintain the same philosophy. The platform will provide and foster a cross-environment security, allowing to each
Environment implementation owner to either adopt it or use its own solution.

The marketplace is responsible to publish and purchase the BPaaS bundle and interact with the customers, the
organizations, the cloud providers (IaaS, PaaS and SaaS) and the system. Then, it will manage the authentication,
the complete lifecycle between the consumers, services and the providers, maintaining them all together and
coherently. Due to these natural capabilities, such cross-environment functionality should be part of the marketplace,
allowing the rest of the environments to decide the level of integration that they want to implement.

Nevertheless, the BPaaS Execution Environment has to be integrated with the actual security solution, since it must
manage the relations with customers and cloud (service) providers in an easy way. Besides the system has to
guarantee the simplicity for the authentication mainly with the interaction of the customers and their quality of
experience. The cross-environment solution is based on standards, such as Cross-domain Identity Management
(SCIM 2015), SAML 2.0 (SAML 2015), OpenId Connect 1.0 (OIDC 2015), and OAuth 2.0 (OAuth 2.0 2015).

Based on this solution, there can be two different security modes: i) the cross-environment one where each
environment adopts the common cross-environment solution; ii) a federated security mode which takes into account
the trust between the different owning organizations of the environments such that users of one environment can be
recognized as users also for the other environments.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 39 of 184

4.3 CloudSocket Usage Scenario

Through the inputs of the use case analysis, we can derive a CloudSocket use case scenario that provides a high-
level coverage for the functionalities / capabilities exposed to the main stakeholders/actors.

The identified functional capabilities are covered by the different BPaaS environments:

 The CloudSocket Broker has an idea about a particular business process he / she wants to offer to its

customers. Based on the experience on the market potential and on feedback from potential clients, the

CloudSocket Broker decides to offer a BPaaS on the CloudSocket platform he/she exploits.

 The CloudSocket Broker designs the domain specific business process using the BPaaS Design

Environment. He/she may involve Business Process Modellers and Ontology or Domain experts to raise the

quality of the business process. Business related artefacts are added to the domain specific business

process in order to communicate the business needs to the technical experts.

 The CloudSocket Broker may then involve a Workflow Modeller, who creates one or several workflow

models for each domain specific business process. Hence, by involving business process modellers,

domain experts and workflow modellers, the CloudSocket Broker bridges the business to IT gap from the

business process to the workflow and produces suitable design artefacts: domain business process models,

executable workflow models, annotations and business rules.

 The CloudSocket Broker takes allocation decisions with the assistance of the BPaaS Allocation

Environment in order to create BPaaS bundles. Technical assistance may be acquired from experts, such

as technical consultants or operators that are providing the necessary production system.

 The allocation decisions rely on Service Providers offering services that could realize or provide support to a

part or the whole BPaaS workflow of the broker. Such services are published in the Service Registry in

order to be exploited.

 The CloudSocket Broker also selects IaaS services for hosting internal software components from the Cloud

Provider Registry to realize the functionality of the respective executable workflow tasks. He/she also

defines adaptation rules that can drive the runtime adaptation of the BPaaS. The allocation decisions at the

IaaS level are described in the form of a deployment plan with failure semantics. The CloudSocket Broker

should also define the respective SLA that would explicate the service level offered as well as the

corresponding obligations and penalties of the signatory parties. The final allocation product, the BPaaS

bundle, encompassing allocation decisions, plans, and SLAs, is published in the marketplace.

 A CloudSocket Customer browses the marketplace and selects a particular BPaaS bundle through the

support of the marketplace assistance system. The CloudSocket Customer purchases this bundle and

creates accounts for the cloud (SaaS or IaaS) services included in it, if such accounts do not already exist.

Once the above actions finish, the bundle is deployable and thus sent to the Execution Environment for

adaptive provisioning and operation. The latter operations are performed automatically, so the CloudSocket

Broker needs just to observe them and intervene whenever required.

 The CloudSocket Customer can use the interface of the Execution Environment in order to create instances

of the BPaaS as well as to monitor the SLOs that are part of the SLA conducted with the CloudSocket

Broker. The BPaaS instances can be executed or managed (e.g., suspend workflow instance execution,

resume, skip one task, etc.).

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 40 of 184

 The CloudSocket Broker uses the monitoring interface of the BPaaS Execution Environment to check which

SLAs are met and which are not and in the latter case discover the main root cause(s) of the problem.

He/she does not always need to intervene as the BPaaS Execution Environment is able to automatically

adapt the BPaaS when SLOs are not met, provided that the respective adaptation rules have been already

specified in the BPaaS bundle.

 The CloudSocket Broker also exploits the BPaaS Evaluation Environment to check whether KPIs are met or

not, why they are not met as well as retrieve optimization suggestions that can lead to redesigning and re-

allocating the BPaaS.

 The CloudSocket Broker can analyse current costs through the marketplace and can decide, by also

considering the findings from the BPaaS Evaluation Environment, whether to: (a) change the pricing model

of the BPaaS, (b) alter the allocation decisions on the executable workflow/bundle.

 The CloudSocker Broker can also inspect the monitoring and evaluation information provided by the

Execution and Evaluation Environments in order to improve the BPaaS offered by, e.g., modifying the

underlying business process, workflow, or bundle (SLA, pricing model, deployment plan, service allocation,

adaptation rules).

 The BPaaS Customer can also inspect current charge and SLA status information so as to inspect whether

he/she can: (a) continue using the BPaaS, (b) stop/cancel the BPaaS SLA when the respective conditions

being currently applied allowing him/her to do so, (c) change offerings (if he/ she desires to, e.g., choose a

better SLA to accommodate for the increased load from its customers).

As it can be seen from the above analysis, we have actions which are performed by the CloudSocket Broker to
manage a BPaaS (design, allocate, configure, monitor and improve it) as well as actions performed by the
CloudSocket Customer related to the purchasing and actual usage of a BPaaS.

In order to demonstrate the CloudSocket vision Figure 3 depicts sample BPaaS offerings. A BPaaS marketplace
enables the BPaaS Customer to select from a business processes according his domain-specific needs. He/she
then views a filtered list of business processes from which he/she can select the desired one. The BPaaS Customer
can then choose the preferred workflow realisation by viewing: (i) the business process (ii) the workflow and (iii) cloud
specific information, such as the technical details of the deployment.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 41 of 184

Figure 3 BPaaS Marketplace

The above scenario explains the vision, where the new type of cloud offerings in form of business processes is
introduced. According this idea, additional application sceanrios can be enabled like cases where the BPaaS is used
as a consulting service, where the CloudSocket Broker acts also as a business process consultant for the
CloudSocket Customer. Hence, the resulting business processes may either be modelled by the CloudSocket
Broker, the CloudSocket Customer or in a collaborative way between them. In the latter case, the roles involved for
some environments are updated (e.g., customer roles in the Design Environment or even possibly at the Allocation
Environment depending on the technical capabilities of the customer). The BPaaS reference models (D5.2 2016)
describe in more detail the different ways business processes can be completed.

The steps of the CloudSocket Broker can be regarded as part of the CloudSocket lifecycle, whereas the steps of
the BPaaS Customer can be regarded as CloudSocket user interactions.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 42 of 184

4.4 CloudSocket Ecosystem

Here the different actors and perspectives described in the first exploitation and business plan (D8.1 2016) as well as

in the prototype documentation (D4.2_4.3_4.4 2016) are repeated for completeness reasons to explain the intended

ecosystem. The project has considered a classification of the stakeholders, which are all the individuals, groups,

units or communities that (a) could be interested in project development and exploitation or (b) just follow the project

results and especially those activities of CloudSocket that could have a direct or indirect impact on them. These

stakeholders have been split into 2 main levels: i) the different groups of project partners which are involved in the

CloudSocket concept development as well as are directly linked to project success and further exploitation, ii) all

further groups of stakeholders which are not directly in charge of the project execution but are somehow interested in

its results. Therefore, the prototype is aligned with this first level, where the following stakeholders are considered

(see Figure 4):

 CloudSocket Customer can be Small and Medium Enterprises (SMEs), founders and start-ups, both IT and

not IT-based, which in case of CloudSocket project represent potential broker customers. These end-end

users are identified in the sequel of this deliverable as BPaaS Customers as they represent potential

purchasers of the BPaaS offerings provided by the CloudSocket Brokers.

 CloudSocket Brokers do not operate only as a third-party business that is an intermediary between the

purchaser of a cloud computing service (SMEs and start-ups) and the provider of that service (Marketplace

with its multi-clouds offer) but can also act as a consultant to support SMEs in transferring their business

processes into the cloud, after assessing their cloud readiness. Moreover, such brokers can realize the

whole lifecycle of cloud-based business processes thus saving for SMEs/startups the work of attempting to

perform the business-to-IT alignment themselves as well as the investment of resources and time in order to

support this lifecycle.

 Technology providers are project partners, which provide their software components/products, such as base

CloudSocket functionality realization or add-on functionalities, or other (commercial) organizations which

offer replacements of software components that have been developed by the members of the CloudSocket

consortium. We foresee that such technology providers might also offer the whole CloudSocket prototype to

brokers in order to enable the respective management of the BPaaS to be generated and offered to BPaaS

Customers. In some cases, such providers may also offer particular environments, like the Marketplace, to

be exploited by brokers, leading to a more loosely coupled instantiation of a running CloudSocket platform

comprising different environments that are maintained by different operators.

 Researchers are university representatives (researchers, academics) and research groups (universities,

institutes) focusing on research and development, elaborating their teaching courses, building network and

research communities, consolidating and conceptualizing of abstracts or general ideas. This stakeholder

kind performs research and development tasks which can result in add-on or component replacement

prototypes that could be embraced in existing CloudSocket product variants.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 43 of 184

Figure 4 - CloudSocket ecosystem source:(D8.1 2016), p14

Therefore, the two main actors and their perspectives have been considered to show the demonstration in the

following sections:

 CloudSocket Customer Perspective: Involves entities such as SMEs, founders or start-ups that want to

reduce their costs and create added value for their business processes by moving some parts of them (or

fully) in the cloud. They can search, review and purchase the different BPaaS bundles, which have been

published previously by the CloudSocket Brokers. Afterwards, the purchased BPaaS Bundle is deployed

automatically in the cloud and it is ready to be used by the customer.

 CloudSocket Broker Perspective: The CloudSocket Brokers want to create a BPaaS bundle in order to

expose them to possible customers that might be interested in them. They need to interact with the Design

and Allocation Environments to create the bundle. Afterwards, they can publish the bundles in the

marketplace such that these bundles are exposed and available to their customers. Finally, the brokers can

analyze the results of the Evaluation Environment to optimise existing BPaaS or create new ones by

identifying the respective needs to be covered.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 44 of 184

5 BPAAS DESIGN ENVIRONMENT

5.1 Introduction

The BPaaS Design Environment provides appropriate conceptual modelling tools for: (a) designing domain specific
business processes, (b) executable workflows, (c) additional descriptions and rules for deployment as well as (d) Key
Performance Indicators. In order to provide those different modelling tools within one environment, a meta modelling
platform is used that enables the plug-in of different modelling aspects. For BPaaS, the aforementioned different
modelling approaches correspond to the first two business process layers – the (I) domain specific business process
as well as the (II) executable workflows – thus actually providing support to the alignment from the business to the
technical layer.

Hence the meta modelling platform enables to keep all models in one repository as well as the interaction between
the different layers via so-called model weaving and semantic lifting.

Independent modelling tools have the benefit of proprietary strengths in one particular aspect; hence the use of an
independent workflow modelling tool is foreseen, which can be added on to the meta modelling platform. This
enables the use of a proprietary workflow modeller corresponding to the workflow engine in the cloud production
environment as an external tool; on the same time, it enables the interaction between the different modelling layers in
the meta model platform.

A meta modelling platform enables the plug-in of different modelling aspects – they are called “modelling methods”.

The plug-in system is built on two main approaches:

 REST Services and ADOScript based components: Modelling methods are integrated as external

components and may provide their features through the network. In such a case, a component written in

ADOScript scripting language is used in order to communicate with the service, process the input and

output and integrate it in the BPaaS Design Environment. In case the external component is deployed

locally or is not a network component, the ADOScript is used to call and interact directly with its API.

 Javascript Model Features Block (MFB) components: The WebModeler part of the Design Environment

gives the possibility to add features and extensions using a special javascript structured package named

MFB. Each MFB is a plug-in that integrates directly into the modelling environment.

The BPaaS Design Environment consists of:

 A meta modelling platform that provides a BPaaS model repository for all its models, the corresponding

management and security infrastructure, and a development environment that enables the implementation

of modelling components.

 BPaaS modelling components are distinguished by their modelling languages – which are implementations

of standards like BPMN, DMN, or RDF – as well as by modelling features, such as user interaction and

model processing. The domain specific business process modeller and the executable workflow modeller

are actually both such a meta modelling component.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 45 of 184

 The corresponding Web-GUI realizes the user interaction features, to manipulate a model.

 Interfaces enable the access to the BPaaS Design Environment, in particular to the BPaaS model

repository, which comprises domain specific business process models, executable workflow models and

additional business requirements. The respective interaction related to the access can rely on standard

features, such as BPMN export / import or on implemented proprietary exchange formats.

In addition to this meta model based business process framework, the BPaaS Design Environment has the possibility
to perform different kind of analysis and annotate the models with an ontology. The so-called semantic lifting enables
the semantic annotation of BPaaS models with global ontology concepts, while simulation, formal correctness
verification and cloud readiness check constitute the supported analysis phases. Hence, we introduce the following
additional elements:

 The Semantic Annotation Kernel.

 Business Process Simulation Service.

 Business Process Verification Service.

 Cloud Readiness Check Service.

The functional capabilities, apart from designing business processes and workflows, include visualizing, querying,
and simulating. Another functional capability involves the rule-based transformation from any kind of model format to
another format. In addition, the environment offers capabilities to compose meta-data and to define KPIs in a top-
down manner.

Each level enables incorporating the definition of Key Performance Indicators (KPI); hence KPIs can be defined on:
(i) domain specific business process level, (ii) workflow level and (iii) and deployment level. The combination of the
semantic lifting with KPI models results in the semantic annotation of business process models and workflow models
with ontology concepts from business, IT and Quality of Service (QoS) / Quality of Business (QoB) ontologies.

Following roles are involved at the CloudSocket Broker side, when using the BPaaS Design Environment. The
Business Process Designer is responsible for modelling domain specific business processes, while the Workflow
Designer is responsible for modelling the executable technical workflows. The result of a business process design is
a set of models that are made available to the next step in the life-cycle of a BPaaS which maps to its allocation
supported by the BPaaS Allocation Environment.

The models produced are the following:

 a domain specific business process model in BPMN format and additional meta data such as figures, cloud

specific requirements or KPIs along with information pertaining to the description of the CloudSocket

Customer, its non-functional requirements and its main business objectives,

 a semantic lifting of the business process model typical form of a BPMN model along with RDF-based

semantic annotations to business & IT ontology concepts,

 the executable workflow model in BPMN again along with RDF-based semantic annotations and

 the definition of KPIs based on OWL-Q.

When deploying the BPaaS Design Environment, the following components need to be deployed and start operating:
(a) a web-based modeller offered in the form of a SaaS or web application which enables domain specific business
processes design, (b) a BPaaS model repository which is responsible for the management & retrieval of (b1) domain

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 46 of 184

specific business process models, (b2) executable workflow models, and (b3) the KPI models; assisting in the task of
the designer to compose models out of fragments constituting previous design knowledge.

5.2 Functional Capabilities

 Business Process Design including visualization, query, and transformation of domain specific business

processes in different formats.

 Business Process Analysis including process simulation, formal correctness verification and cloud readiness

check.

 Executable Workflow Design including visualization, validation and transformation of executable workflows

in different formats.

 Top-Down KPI definitions for all layers, such as business process, executable workflow, deployment and

operative process instance.

 Meta Data Composition to describe business processes and executable workflows.

 Semantic Lifting of domain specific business processes and executable workflows.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 47 of 184

5.2.1 Business Process Design

Use Case id DE-UC-1-Business Process Design

Title and

Description

A CloudSocket Broker wants to offer a new BPaaS to its clients; hence the broker models a

domain business process specifying the required functional and non-functional process behaviour.

This requires to login into the business process repository and might include browsing and

searching within existing business process models. A new business process can be designed

either by creating a new model and start modelling a new business process from scratch, or by

copying another model and reconfiguring it via changing that model.

Business process and KPI design has two major elements: (a) first the software tool that provides

the appropriate modelling features and enables a user interface to the business process

repository, and (b) second the modelling method that provides the modelling language. The

modelling language consists of the business process modelling notation (BPMN), the decision

model notation (DMN), the Resource Description Language (RDF) and a semantic description of

the KPIs (OWL-Q).

Actors CloudSocket Broker – Business Process Designer

Use Case

Objective

Business Processes are designed from the business perspective

Pre-

Condition

The user (Business Process Designer) is registered in the BPaaS Design Environment and has

competence in business process modelling. For business process browsing and searching,

previous business processes need to be stored or imported into the repository.

Process

Dialog

User interaction for browsing and searching:

 Selecting directories of models or creating / editing / deleting a directory

 Create a new model, or select an existing model and save as a new model.

 Model management by renaming, deleting or editing models.

User interaction is required for the process modelling, consisting of:

 Drag and Drop of modelling objects

 Parameterisation of each modelling object

 Graphical notation optimisation indicating selected parameters

 Navigational support, such as hyperlinks between models

 Modelling support, such as zoom, snap grid, connector bending, selection, undo or model

navigation.

Variations Model management may be used to massively reorganise the repository or import business

processes in form of BPMN files.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 48 of 184

Post

Condition

Business Processes are modelled and can be further used.

Diagram

Figure 5 Use Case Diagram – DE-UC-1-Business Process Design

Figure 6 Sequence Diagram – DE-UC-1-Business Process Design

Table 5 BPaaS Design Environment - Use Case 1 –Business Process Design

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 49 of 184

5.2.2 Business Process Analysis

Use Case id DE-UC-2-Business Process Analysis

Title and

Description

Business Processes need to be analysed in order to check their correctness, their unexpected

behaviours as well as evaluate costs and decisions like the readiness to be deployed in the cloud.

The analysis phase in particular comprises the following functionalities. Simulation analysis in order to

evaluate costs and times of the service in order to optimize and evaluate its feasibility. Verification

analysis in order to check the presence of structural problems that may rise unexpected behaviours in

the process execution like deadlocks or livelocks. Cloud Readiness analysis in order to evaluate

through a series of questions, if a specific path of the Business Process Workflow is ready to be

deployed in the cloud or not.

Actors CloudSocket Broker - Business Process Designer. It is expected that the Business Process Designer

knows sufficiently about statistic concepts and technical details in order to simulate and answer the

cloud ready questionnaire. If not it is his/her responsibility to involve a technical expert and a

mathematician.

Use Case

Objective

The business process correctness is guaranteed

Pre-

Condition

Business processes models are available.

Process

Dialog

In the design environment, the user has to open the model explorer and right click on the model he

wants to analyse and then choose between the following alternatives:

 Select Remote Simulation in the menu in order to visualize the simulation interface and

launch the simulation. Results will be available in minutes and be visualised in tabular and

chars forms in order to be easily interpreted

o Details on paths, traces and activities involved in the simulation can be highlighted

in the model using the appropriate “show” buttons.

 Select Remote Verification in the menu in order to visualize the formal verification interface:

o Select the deadlock check in order to guarantee the absence of deadlocked paths

o Select the boundness check in order to guarantee the absence of livelocked paths.

 Select Cloud Ready Check in the menu in order to start the cloud readiness checking

process: this process will guide the user in answering questions on activities of the Business

Process and will return a score indicating its feasibility to be deployed as a whole or partially

in the cloud.

Variations Formal verification can be performed in order to evaluate some user-defined rules like guaranteeing

the sequence of two events. These methods are available in the Verification interface.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 50 of 184

Post

Condition

Business Processes are analysed and their behaviour is the one expected.

Diagram

Figure 7 Use Case Diagram – DE-UC-2-Business Process Analysis

Figure 8 Sequence Diagram – DE-UC-3-Business Process Analysis

Table 6 BPaaS Design Environment – Use Case 3 – Business Process Analysis

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 51 of 184

5.2.3 Semantic Lifting

Use Case id DE-UC-3-Semantic Lifting

Title and

Description

Business Processes describe the business view and hence need to be annotated to cloud specific

selection criteria, such as QoS, technical parameters or CloudSocket specific business indicators.

Semantic Lifting enables to align business process descriptions so as to be linked to semantic

concepts of an ontology. Hence, each element of a business process can be enriched with a globally

defined – cloud specific - ontology.

Actors CloudSocket Broker - Business Process Designer.

It is expected that the Business Process Designer knows sufficiently about ontology handling; if not it

is his/her responsibility to involve an ontology expert. However, for simple usage of the ontology, no

ontology expert is expected.

Use Case

Objective

Business process is described with parameters that enable the business oriented selection in the

marketplace as well as the business oriented identification of Key Performance indicators.

Pre-

Condition

Business processes models are available.

The (cloud) ontology with concepts used for lifting must be provided.

Process

Dialog

Within the user interface of the design environment there is a dialog enabling the selection of

ontological concepts. This selection dialog can vary depending on the complexity:

 Simple selection of a concept from the ontology

 Pre-selection of ontology parts from the model and fine grading by selection from the

ontology

Variations In case there are missing concepts that need to be incorporated into the ontology, the ontology must

be updated. This is performed by an ontology expert.

Post

Condition

Business Processes are semantically enriched and hence semantically searchable.

Diagram

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 52 of 184

Figure 9 Use Case Diagram – DE-UC-3-Semantic Lifting

Figure 10 Sequence Diagram – DE-UC-3-Semantic Lifting

Table 7 BPaaS Design Environment – Use Case 3 – Semantic Lifting

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 53 of 184

5.2.4 Executable Workflow Design

Use Case id DE-UC-4-Executable Workflow Design

Title and

Description

The business process describes the domain view and hence does not include technical details to

enable its execution. Hence, the executable workflow design is a technology oriented description

of the previously described domain specific business process.

This design transforms domain specific activities into technical specifications by:

 Resolving all manual activities in actions that are understood by a workflow engine

 Resolving all semi-automatic activities in actions that are understood by a workflow

engine

 Detailing all automatic activities with parameters that are necessary for a workflow engine

 Detailing the data exchange from business level documents to technical data formats

To this end, a business process can be realised in one or many executable workflows.

Actors CloudSocket Broker – Workflow Designer

It is expected that the Workflow Designer knows sufficiently about ontology handling; if not it is the

responsibility of the Workflow Designer to involve an ontology expert. However, for simple usage of

the ontology, no ontology expert is expected.

Use Case

Objective

Definition of executable workflows that are linked to domain specific business processes.

Pre-

Condition

The domain specific business process must be available and semantically enriched with cloud-

specific details, thus providing sufficient input information for creating an executable workflow.

Process

Dialog

The Workflow Designer needs first to select the business process by:

 Browsing or searching for business processes

 Copying the business process in a workflow template and establishing a link between the

original business process and the workflow

 Exporting the workflow template from the BPaaS model repository into a workflow

designer tool that is compatible with the workflow engine in the cloud production

environment.

After the selected workflow template model is exported in the corresponding workflow design

environment, the workflow is modelled by:

 Using drag and drop feature of modelling objects

 Creating, editing and deleting modelling objects

 Modelling support, such as zoom, snap grid, connector bending, selection, undo or model

navigation.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 54 of 184

 Parameterising each executable action with technical parameters.

After designing the executable workflow, it has to be imported back into the BPaaS model

repository, so that the corresponding executable package can be searched and found in

combination with the business process:

 A user interface is offered for importing “executable” workflows into the BPaaS model

repository.

After the workflow is imported into the BPaaS model repository, it is semantically lifted by:

 Simple selection of a concept from the ontology

 Pre-selection of ontology parts from the model and fine grading by selection from the

ontology.

Variations In case executable workflows are created without the original business process, they can still be

imported as executable workflows, but need to be linked to the domain specific business process

afterwards. So, the business process is then selected or created and linked to the executable

workflow.

Post

Condition

The executable workflow is linked to the original business process and is semantically lifted to both

the business process and its semantic annotation as well to additional own semantic annotation.

Diagram

Figure 11 Use Case Diagram – DE-UC-4-Executable Workflow Design

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 55 of 184

Figure 12 Sequence Diagram – DE-UC-4-Executable Workflow Design

Table 8 BPaaS Design Environment – Use Case 4 – Executable Workflow Design

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 56 of 184

5.2.5 KPI Definitions and Meta Model Completion

Use Case id DE-UC-5-KPI Definitions and Meta Model Completion

Title and

Description

In addition to business processes and their semantic lifting, additional meta data can be defined.

Current identified meta data are:

 Key Performance Indicators (KPI) from a business oriented viewpoint. Those KPIs are

typically not cloud specific but business domain specific while giving an indication on how

to map them to cloud specific measures.

 Decision Models to indicate business rules for deployment and execution

 “Business process based Service Requirements” map service descriptions to business

process tasks as an extension of BPMN. Service requirements in form of business,

technical, legal or data related statements provide additional domain specific description

and when semantically annotated also semantics.

For completeness reasons those additional aspects are mentioned here, as they are not specified

in the BPMN standard but provide valuable information, which can be extracted and exploited

during the later stage of the BPaaS lifecycle.

Actors CloudSocket Broker – Business Process Designer

CloudSocket Broker – Workflow Designer

Use Case

Objective

The BPaaS Design Package is completed with these additional aspects.

Pre-

Condition

Business process and / or workflows must be defined

Process

Dialog

KPI definitions are extensions of the BPMN modelling language with the required OWL-Q

concepts; hence the modelling interaction is the same as above either for KPIs with respect to

business process, or KPIs with respect to workflows.

Variations n.a.

Post

Condition

The complete meta data package for a business process is defined.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 57 of 184

Diagram

Figure 13 Use Case Diagram – DE-UC-5-KPI Definitions and Meta Model Completion

Figure 14 Sequence Diagram – DE-UC-5-KPI Definitions and Meta Model Completion

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 58 of 184

Table 9 BPaaS Design Environment – Use Case 5 – KPI Definitions and Meta Model Completion

5.3 Components

Three layers: (a) one for the user interface, (b) one for model-specific functionality and (c) the third one for model

management, have been identified.

5.3.1 User Interface Layer

This layer contains all the graphical interface components to interact with the users of the BPaaS Design

environment:

 Business Process Modelling User Interface:
This user interface provides Web interfaces to the corresponding features of the BP model component. An

Authentication service provides access management, the Web-Modeller provides interfaces for model

management and model design, the transformation interface provides import / export features to different

formats, a Dashboard enables the representation of KPIs in correspondence with the business process.

Semantic lifting of business processes is provided inside the model editor.

 Workflow Modelling User Interface:
This user interface enables the creation of Workflow templates and the semantic annotation. It will be added

to the aforementioned Business Process User Interface.

Both user interfaces interact with the components on the modelling layer, which have been configured for BPaaS

usage and are built on top of BOC ADOxx Web-Application. Hence, the user interface is provided by the underlying

meta modelling platform ADOxx, whereas the modelling language that can be used is different.

Figure 15 BPaaS Design Environment – Domain Specific Business Process Designer User Interface Mockup

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 59 of 184

Figure 15 indicates the user interface demonstrating a business process with domain specific key performance

indicators as additional graphical representations.

5.3.2 Modelling Layer

This layer provides modelling functionalities for different modelling languages. In general, there are four major

functionalities for modelling: (a) Graphical Design, (b) Conceptual Query, (c) Simulation and (d) Transformation of

Models.

Such major functionality is broken down to concrete features and mapped to the respective modelling language.

Such model functionality can be distinguished into: (i) Generic implementation, hence in a modelling language

independent way, (ii) Domain specific implementation, hence a one to one implementation for a specific modelling

language, as well as (iii) Hybrid implementation, which a generic implementation requires special configuration to be

used for a particular modelling language.

Those architectural baselines require identifying three different modelling components for:

1. Business Process Modelling
2. Workflow Modelling
3. Semantic Alignment Modelling.

Not all aforementioned major functionality needs to be applied to all three components; hence we define the following

functional capabilities for each component:

 Business Process Modelling Component

User management, model management and model design are some of the main functionalities supported by

this component and required for Business Process Modelling.

Business process analysis is offered in the form of support features, such as indicating which processes are

available, or listing processes with a certain textual annotation.

The Transformation capabilities enable exporting the graphical representation in form of an image, as well

as exporting the business process in form of a BPMN.

The features for semantic annotation of business processes are essential for Cloud Socket. Semantic lifting

of business processes according to domain specific requirements is essential to enable an alignment.

This component is based on the meta modelling platform ADOxx, and hence uses configuration of its

components, the scripting of add-ons as well as the implementation of additional features.

 Workflow Modelling Component:

The Workflow modelling component provides similar features with respect to those offered by the business

process modelling component. The actual design and configuration of a workflow is performed in a separate

so-called “Executable Workflow Designer” component.

This enables a higher flexibility and reduces the vendor dependencies, as any workflow designer that is

compatible with the Workflow Engine operating in the cloud, can be used. The alignment and CloudSocket

relevant parameters can be modelled in the Workflow Modelling Component, and the workflow engine can

be designed in the separate tool. The executable workflow is then imported back to enable semantic

annotation and discovery but not for the sake of modifying the executable workflow.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 60 of 184

Hence this component provides user management, model management and model design features for

workflows.

The transformation capabilities – that are provided through the model environment API are essential to

export workflow templates and import executable workflows from any other tool in order to store all

workflows in one BPaaS model repository.

Semantic lifting of the workflow templates enables the discovery of workflows according to alignment

parameters.

 Semantic Alignment Kernel:

The semantic alignment kernel is a light-weight model editor without own user interface that enables the

semantic lifting of business processes and workflows (templates). Hence modelling features for annotations

are provided. In addition, full fletched discovery and analysis capabilities are established to enable the

discovery of workflow (templates) for business processes and from respective business process

requirements.

5.3.3 Meta Model Platform Layer

The Meta Model Platform Layer provides the BPaaS model repository, where all business processes, workflow

templates, executable workflows and the corresponding semantic annotations are managed.

Two components are identified:

 Meta Modelling Platform

The meta modelling platform consists mainly of a generic – meta model based – database with the

corresponding meta model interpreter. This meta model interpreter is then configured by a modelling

language. Hence, the following modelling languages are configured: (a) business process modelling, (b)

workflow templates and workflow modelling, (c) semantic alignment, (d) KPI modelling, (e) Decision

modelling, and (f) Business requirement modelling. The meta model platform provides a repository of all

business processes, workflow templates, executable workflows and semantic annotations.

User and security management is provided by the platform.

The ADOxx meta model platform is the basis of the BPaaS Design Environment as it introduces conceptual

flexibility and hides the meta model complexity from the other components.

 Meta Model API

The model repository API is a configuration of interfaces that correspond with the meta modelling platform to

provide interfaces for:

o BPMN Import / Export:
The BPMN import is used to import business process models and executable workflow models.

The BPMN export is used to export business processes, workflow templates or executable

workflows and interacts with the BPaaS Allocation Environment

o DMN Import / Export:
Decisions and rules will be used to guide the deployment specification of the BPaaS in the cloud

and constitute a fundamental input for the BPaaS Allocation Environment.

o RDF Import / Export:
RDF Export provides semantic meta data about the business processes and workflows and hence

enables the introduction of relevant SLA, deployment or allocation guideline information.

o BP and Wf Discovery:

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 61 of 184

This interface provides a mapping file that can be used by a marketplace or any other environment

to identify corresponding business processes to workflows and vice versa. This interface interacts

with the Marketplace.

o KPI Import / Export:
This interface requests and introduces KPIs for business processes and workflows and interacts

with the BPaaS Evaluation Environment.

5.3.4 Executable Workflow Designer

The executable Workflow Designer is a third party tool that is compatible with the Workflow Engine in the BPaaS

Execution Environment. Actually, the Workflow Designer should be part of the Workflow Engine. This tight linkage

between the Workflow Designer and Workflow Engine is created as there are tool specific dependencies, and in

order to enable practical and reliable workflow solutions.

In order to enable the business and IT Cloud alignment, the created executable workflow models are imported into

the aforementioned Workflow Modelling Component. This is possible, as the BPMN standard allows the storage of

vendor specific attributes, hence storing the BPMN workflow file for a particular Workflow Engine in the

aforementioned Workflow Modelling Component will not harm any specific workflow configurations.

This approach enables both:

(a) reliable workflow configurations as the CloudSocket Broker selects the Workflow-Engine and

Workflow Designer that best fits its needs,

(b) business and IT-cloud alignment via the meta model platform, as workflows from the third party

system are imported and semantically annotated.

As this tool is a third party Workflow Designer, it is not further described, except that it is expected to provide typical

design features for executable Workflows, as well as an import / export of BPMN files to interact with the Workflow

Modelling Component. Figure 12 indicates the user interface demonstrating an executable workflow model, including

the technical description.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 62 of 184

Figure 16 BPaaS Design Environment – Executable Workflow Designer User Interface Mockup

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 63 of 184

Component diagram

Figure 17 BPaaS Design Environment - Component Diagram

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 64 of 184

5.4 Research Contribution

An overview of the BPaaS Design research contribution (D3.1 2016) is sketched in Figure 18. On the left-hand

side, there is the human-interpretable BPaaS Modelling Environment. On the right hand side, there is the

machine-interpretable ontological representation and the inferencing for the smart business and IT alignment.

Figure 18: Overview of the BPaaS Design Environment and Smart Business IT-Cloud Alignment

The ontology defines the semantics of the meta model elements. This means, in particular, that it contains class

definitions for the modelling elements of business processes and workflows. Furthermore, it also contains

additional definitions, which can be used to annotate models and model elements. The facts of the knowledge

base are created by transformation, which creates instances and maps them to the corresponding classes of the

ontology.

The alignment can be regarded as a four step approach:

1. Business processes and workflows are modelled using the BPaaS Modelling Environment and the

semantic lifting support via the BPaaS Ontology. Both the business process models and workflows are

annotated with a description of their functional and non-functional capabilities.

2. The information of the models is translated into a machine-interpretable representation (called Triple

Store Repository).

3. The business process model is mapped to one or several appropriate workflow models by comparing

the business process requirements with the workflow descriptions. This workflow identification is done

by the inference engine for smart business and IT in the cloud alignment using the mapping rules of the

BPaaS Ontology component.

4. Finally, the BPaaS Design Package is created. It consists of the domain-specific business process and

the executable workflow model, the key performance indicators and additional information which is

relevant for allocation and deployment.

The prototype has a focus on the following parts: The business process and workflow models, the respective

semantic annotations and the transformation and mapping rules for the business and IT alignment. The creation

of the BPaaS Design Package still requires manual work by Cloud Broker experts, but could be considered to be

automatized in the further development of the BPaaS design prototypes.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 65 of 184

A comprehensive description of the BPaaS modelling method and the related model types is provided in chapter

2 of Deliverable D3.2. Three model types are relevant for the alignment: (a) Business Process Model, (b)

Workflow Model and (c) Service Description Model. The first two model types are expressed with the standard

BPMN 2.0, while the third one represents a cloud specific description concept, which is based on the FODA

approach (Kang 1990).

Based on the latter concept, both the business process and the workflow model can be semantically enriched

according to both functional and non-functional aspects.

Both functional business process requirements and workflow descriptions are specified with the following

attributes: (a) With the first attribute, the tasks or groups of tasks are categorised by assigning hierarchies from

the APQC Process Classification Framework (APQC 2014); (b) Additionally, the semantics of the tasks can be

specified by assigning an object and an action from a predefined taxonomy.

Conversely, non-functional requirements and specifications are determined based on the Cloud Service Level

Agreement Standardisation Guidelines (C-SIG SLA 2014). These guidelines are an outcome of the European

2020 initiative “Digital Agenda for Europe” and have been published in order to standardise and streamline the

terminologies and understanding of Cloud Service Level Agreements.

The mapping between non-functional business process requirements and non-functional workflow descriptions is

done by matching rules, which are part of the smart business and IT alignment. The matching is not always map

to a 1:1 correspondence. It can happen that one or more elements in the business process requirements can be

mapped to one or more non-functional descriptions, hence we claim that their relationship is n:m.

The BPaaS Ontology is an extension of the ArchiMEO ontology. The BPaaS Ontology includes all concepts

required to describe cloud specific requirements in order to achieve a smart alignment of business and IT. The

cloud-specific extensions were determined from the analysis of the business scenarios as well as from

competency questions and are described in detail in Deliverable D3.1 (CloudSocket 2015b).

The ontologies can be publicly accessed using the following links:

 APQC: https://github.com/BPaaSModelling/APQC-Ontology/blob/master/apqc.ttl

 Functional Business Process Description: https://github.com/BPaaSModelling/Functional-Business-

Process-Description-Ontology (object & action taxonomy)

 BPaaS: https://github.com/BPaaSModelling/BPaaS-Ontology/blob/master/bpaas.ttl

There are different ways of implementing semantic lifting for weaving between the different modelling. In the

prototype, we have implemented the deep integration with a web service. The web service creates and maintains

the link to the different ontologies. The modelling environment calls the web service for a concept by providing the

context and the web service returns the resulting classes and instances, depending on the context as shown in

Figure 19.

Figure 19: Modelling Environment - Web Service Communication

The modelling environment receives at the beginning the link to the web server. While the human models the

diagram, the properties can be set. Properties that need to receive a conceptual annotation, provide the

possibility to make a call to the web service (1). The web service receives the request containing contextual

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 66 of 184

information and queries the ontology accordingly (2). The result set is returned (3) and is being processed by the

web service according to the interface description to the modelling environment. Once the processing is done, the

web service returns the enriched result set (4) to the modelling environment that makes sure that the annotation

is placed at the right place in the meta data of the modelling element.

Rules are used to map the business language to the technical one, while queries are used to compare business

process requirements with workflow descriptions. Rules are used to convert one element value that resides in the

business layer to an element value that resides in the workflow layer. Section 6 of Deliverable D3.2 provides

examples of rules as well as a concrete example on the implementation of the smart business IT alignment.

Figure 20 shows the prototype user interface comparing “Social Media Campaign Process” to two workflows in

the repository. For the given Business process entitled “Basic Social Media Campaign”, only one workflow

matches, i.e. Workflow Social Campaign – Basic1. More in detail, the business process has two groups of

activities semantically annotated, i.e. labelled as Group 1 and Group2. The two workflows have two lanes (or

again groups) each semantically annotated, i.e. labelled as WFD1, WFD2 (acronym of WorkFlowDescription).

The first matching row in the UI shows that both Group1 and Group2 match with WFD1 and WFD2, respectively.

Conversely, the second row shows that there is no workflow description (i.e. no lane or no group) that matches

with Group1 and neither with Group2.

Figure 20: Prototype Showing Matching Results

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 67 of 184

5.5 Roles

Figure 21 BPaaS Design Environment - Actors

The following actors are proposed for the BPaaS Design Environment:

The CloudSocket Broker is an organisation that provides a marketplace for business processes towards the

CloudSocket Customers. Hence the competence in selecting, defining and providing business processes and of

course in taking the business risks in creating business processes that are not sufficiently bought from

CloudSocket Customers is overtaken by this organization. Depending on the competency, this organization will

compensate business and / or technical skills with consultants.

A CloudSocket Broker with business background (see Business Process Designer role), will be capable of

formulating business processes on domain level, but will need support to design those processes on

workflow/execution level.

A CloudSocket Broker with technological background (see Workflow Designer role), will be capable of formulating

technical workflows, but will need support to market the technical solutions via business processes.

The last role is the Ontology Expert. As the maintenance of the alignment ontology is only a minor aspect in the

whole scenario, it is expected that the ontology is either bought, or the expertise is introduced by a consultant.

This alignment ontology is expected to be a research result of the project. Therefore, the role is only briefly

mentioned for completeness reasons.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 68 of 184

5.6 Data Interface

The meta model platform stores meta data for each model, which can be either extracted in raw format, or by

post-processing transformation scripts to create one of the requested formats. Manual export into files and Web-

Service or REST invocation is possible.

5.6.1 BPMN Interchange

The BPMN DI format is used for business process and workflow exchange. The BPMN 2.0 specification defines

formats that contain:

 Meta information,

 Process models that define the sequence and semantics and

 Process diagrams that have the information of the visual representation (e.g. coordinates of the

instances) of the process models.

Process automation can be done with BPMN DI.

The RDF format is used for the semantic alignment of the business processes.

5.6.2 KPI, Meta Data and Decision Model Interchange

KPIs have to be exchanged from the BPaaS Design Environment to any other Environment for the following

layers: (i) domain specific business process, (ii) executable workflows, (iii) deployment and operative process

monitoring.

The BPaaS Design Environment allows interchanging KPI models using the OWL-Q language.

Additional meta data interchanges, such as workflow and business process relations, business requirements or

semantic information are provided in proprietary formats as well as in RDF.

For the exchange of deployment rules, the decision models format DMN is provided.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 69 of 184

6 BPAAS ALLOCATION ENVIRONMENT

6.1 Introduction

The BPaaS Allocation Environment allows a CloudSocket Broker to select a BPaaS Design Package (previously

created via the BPaaS Design Environment) and create a BPaaS Bundle ready to be published in the BPaaS

Marketplace and be deployed in the BPaaS Execution Environment.

A BPaaS Bundle binds a BPaaS Design Package - taken from the BPaaS Design Environment - with the

concrete Atomic SaaS and IaaS/PaaS services that will be invoked by the executable workflow and support its

execution, respectively. A BPaaS Bundle also contains rules to guide the BPaaS Execution Environment in

reconfiguring across clouds and layers the BPaaS, when the respective need arises.

A BPaaS Design Package contains a Workflow Model that can be abstract or executable. Hence, the BPaaS

Bundle created from it, can be abstract or executable too. An abstract BPaaS Bundle can be published in the

BPaaS Marketplace but cannot be deployed and executed. A BPaaS Customer can submit a request for an

abstract BPaaS Bundle in order to show his/her interest in buying it. Hence, the CloudSocket Broker can decide

which abstract BPaaS Bundle to implement and publish as an executable BPaaS Bundle by selecting bundles

according to certain criteria, including the maximum number of abstract BPaaS bundle requests.

In the following, the executable BPaaS Bundles are referred to as BPaaS Bundles while the abstract BPaaS

Bundles are treated as a particular case of executable BPaaS Bundles.

In the creation of a BPaaS Bundle, the CloudSocket Broker is responsible for defining the overall pricing and SLA

for the bundle as a whole, by taking into account the price and the SLA of all the resources/services – e.g. atomic

services and cloud infrastructures - involved in the bundle. The CloudSocket Broker will get paid from the BPaaS

Customer using the BPaaS, will pay for the resources consumed by the deployed BPaaS Bundles and will be

held responsible for the fulfillment of the agreed SLA. Creating and selling a BPaaS Bundle will therefore require

critical and complex business decisions and will imply a degree of risk that will definitely require human

intelligence and understanding to be properly evaluated and accepted. The Allocation Environment will however

provide smart tools to support the Broker in defining the overall pricing and SLA of each BPaaS Bundle.

6.1.1 Description and structure of a BPaaS Bundle

A BPaaS Bundle is a data structure containing all the information required by the Marketplace to show and sell

the bundle, and by the Execution Environment to deploy, execute, account, monitor and assess a BPaaS. Such

information includes:

 Business Process Model: expressed in BPMN2.0 format while its respective image, also contained in the

BPaaS Design Package, is also included in the bundle.

 Executable Workflow Model: expressed in BPMN2.0 format while its respective image from the BPaaS

Design Package is also included in the bundle. This executable workflow model contains all the technical

details required for its proper execution by a Workflow Engine. It might contain invocations to atomic services

selected from an Atomic Service Registry, and invocations to software components taken from a Software

Component Registry. An atomic service can be either a concrete service available in the cloud, or an

abstract service not yet mapped to a concrete one. In order to execute a workflow model, each of the

abstract services associated to workflow tasks must be mapped to concrete ones, and each software

component also associated to a workflow task must be mapped on a compatible cloud infrastructure offering,

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 70 of 184

that is an infrastructure where the component can be technically deployed. The Software Component

Registry provides all the information required to deploy, start, stop and undeploy a software component

component on specific operating systems that could be supported by cloud infrastructure offerings.

NOTE: the Allocation Environment does not allow to create or edit a workflow model: it just allows to select

an existing workflow model from the BPaaS Design Environment and create a new BPaaS Bundle “out of it”.

Thus, the workflow model is generated exclusively in the BPaaS Design Environment.

NOTE: the workflow model references the original business process model it has been derived from. The

workflow-to-business process linking is created and maintained by the BPaaS Design Environment.

 Atomic Service allocation: This is the mapping of each abstract atomic service invoked by the workflow

model to one or more concrete and compatible (i.e. same interface definition) atomic services available in the

cloud, which are registered in the Atomic Service Registry. One from the set of concrete services mapped to

an abstract one will be chosen at run-time by the BPaaS Execution Environment according to

allocation/adaptation rules which are prescribed in the BPaaS bundle. The CloudSocket Broker, however,

has also the capability to fix the mapping between one abstract atomic service to a concrete one, such that

runtime allocation by the Execution Environment is not needed for this abstract atomic service.

 Software Component allocation: As the software component is associated to particular VM requirements

within the Software Component Registry, a list of VM offerings drawn from the Cloud Provider Registry

satisfying these requirements is shown to the CloudSocket Broker, which then selects the most suitable one.

In the BPaaS Bundle specification, apart from identifying the VM offering selected, also the other VM offering

candidates are included for reconfiguration/adaptation reasons (e.g., to migrate from one VM to another one

when the former VM becomes problematic). The respective adaptation cases are covered by the

corresponding adaptation rules which are also included in the BPaaS Bundle.

 KPI Model: This section defines which metrics can be used for defining SLOs (as conditions over metrics)

within the SLA of a BPaaS bundle. The description of a metric will basically consist of an identifier, a

description, and possibly a formula which includes standard math operators operating over other metrics

previously defined and stored in the Metric Registry. We foresee the possibility for defining and exploiting

domain-specific metrics and domain-independent metrics available for any BPaaS Bundle (e.g., number of

concurrent users, concurrent process instances, storage space consumed, up-time percentage in the last 30

days, etc.).

The formula of raw_availability metric, for instance, could be uptime / considered_time_period where uptime

is another metric mapping to the total time that the BPaaS was available and considered_time_period is a

metric configuration constant indicating the time period of measurement. The BPaaS Allocation Environment

will support the Broker in defining or composing metrics as well as checking for circular dependencies within

the derivation hierarchy of composite metrics. Apart from being used in SLOs, conditions over metrics can

also be exploited in defining BPaaS adaptation rules. In particular, such rules include event patterns, where

each event in a pattern can be mapped to a metric condition whose violation can trigger this event. The

metrics supported by the CloudSocket platform are stored in the Metric Registry.

 Service Level Agreement (SLA): This information defines in a quantitative and technically verifiable way the
level of service that will be guaranteed by the entire BPaaS once the BPaaS Bundle will be deployed into the
BPaaS Execution Environment. The SLA will be formally defined as a collection of SLOs (Service Level
Objectives), where each SLO is associated with a metric condition defined as a predicate (i.e., a boolean
function) based on the metric already defined (e.g., uptime_percentage > 99.9). Each SLO can be associated
to a specific penalty to be applied when this SLO is violated (i.e., if the (daily) uptime_percentage > 99.9 is
violated three times in a month, then apply a discount of 10% on the current monthly price). The CloudSocket
Broker is responsible for providing a comprehensive and coherent SLA for the BPaaS Bundle, taking into
account the SLA of each (real) concrete atomic service and of each VM offering allocated.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 71 of 184

 Pricing Model: This information defines how much using the BPaaS will cost to the CloudSocket Customer.

The CloudSocket Broker is responsible for providing a comprehensive pricing model for the entire BPaaS

Bundle taking into account the pricing of each real atomic service and of each cloud infrastructure allocated.

 Business Process Metadata: This is the information required by the BPaaS Marketplace to assist the

customers in browsing, selecting and purchasing a BPaaS Bundle. Indeed, it contains categories (according

to the APQC taxonomy) and tags used to filter the BPaaS Bundles offered in the BPaaS Marketplace and

business process-related information (e.g., pictures and textual description of the business process) to let the

customer select a specific bundle matching his/her needs. The Business Process Metadata will allow for

instance a customer browsing the marketplace to filter only the Bundles implementing an Invoicing process

whose description contains the term “consultancy” and using only Atomic Services hosted in Germany.

NOTE: an abstract BPaaS Bundle contains an abstract Workflow Model instead of an executable one, the

Business Process Metadata and the hypothetical Pricing model that shows to the customer how much the BPaaS

Bundle will cost once the Broker will publish an executable version of it. It does not include the allocation

information and the KPI\SLA Model as these are the technical details which would make the bundle concrete and

would also lead to the need of concretising the actual pricing model to be offered.

Figure 22 BPaaS Bundle Elements

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 72 of 184

6.1.2 Creation of a BPaaS Bundle

The CloudSocket Broker creates a draft BPaaS Bundle using the Bundle Instantiator, by selecting a BPaaS

Design Package from the BPaaS Design Environment. The draft Bundle contains a copy of the Workflow and

Business Process Model contained in the selected BPaaS Design Package, while the other parts of the

aforementioned Bundle data structure are initially empty.

Once created, the draft bundle is immediately opened in the Bundle Designer for the Broker to edit. Whenever the

Bundle is saved, a consistency check is performed server-side by the Bundle Manager. If all the parts of the

Bundle have been properly configured, the Bundle is saved as Consistent.

When a BPaaS Bundle is in a Consistent state, the Bundle Designer allows the CloudSocket Broker to publish it

in the marketplace by issuing a dedicated command. The Bundle Designer then delegates the Bundle Publisher

component to interact with the marketplace management API in order to store a copy of the BPaaS Bundle in the

marketplace. A similar behaviour occurs when a CloudSocket Broker issues a command to unpublish a BPaaS

Bundle; this action changes the bundle state from Published to Consistent. When a BPaaS Bundle is updated,

the Allocation Tool checks that the state is not altered to Draft, hence it remains Published. If the CloudSocket

Broker needs to do major modifications to the BPaaS Bundle changing the state to Draft, he needs to unpublish

the BPaaS Bundle and then modify it..

Bundles are stored in a Bundle Repository, which is partitioned per CloudSocket Broker, thus supporting broker-

based multi-tenancy; that is, every Broker is a tenant of the Bundle Repository, so that it can only see and

manage its own Bundles.

The consistency constraint for a BPaaS Bundle depends also on its type. The main difference is that an abstract

bundle does not require the allocation information which is, however, mandatory for an executable bundle. KPI

and SLA information are both optional for an abstract BPaaS Bundle. Pricing model and Business Process

Metadata are both mandatory for both abstract and executable BPaaS Bundles.

Figure 23 BPaaS Bundle States

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 73 of 184

6.1.3 Architectural overview

The web application provided by the BPaaS Allocation Environment follows a multi-tier architecture and the

respective components are distributed across three main layers:

 a user-interface layer, responsible for the interaction with the users;

 a business-logic layer, implementing the logic of the services invoked;

 a persistency-management layer, responsible for saving, loading and managing data in the involved

databases.

6.2 Functional Capabilities

The main functional capabilities of the Allocation Environment are:

 Creation of BPaaS Bundle

 Editing of a BPaaS Bundle

 Editing of a BPaaS Bundle / Atomic Service Allocation

 Editing of a BPaaS Bundle / Software Component Allocation

 Editing of a BPaaS Bundle / KPI Model Definition

 Editing of a BPaaS Bundle / SLA Definition

 Editing of a BPaaS Bundle / Pricing Model Definition

 Editing of a BPaaS Bundle / Business Process Meta-Data Editing

 BPaaS Bundle Publishing in the Marketplace

Since the CloudSocket Broker is the only responsible actor involved in the BPaaS Allocation Environment, the

web application is not profiled and all the functionalities can be performed by any broker. All the use cases

involved assume that a CloudSocket Broker is authenticated and authorized to use the web application.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 74 of 184

6.2.1 Creation of a BPaaS Bundle

Use Case id AE-UC-1 Creation of BPaaS Bundle

Title &

Description

A CloudSocket Broker creates a new BPaaS Bundle.

The broker browses the BPaaS Design Environment, selects a BPaaS Design Package

and confirms selection. A new draft bundle is created by the Bundle Instantiator

component, opened in the Bundle Designer and finally saved in the Bundle Repository.

The Broker can optionally edit the Bundle before saving it.

Actors CloudSocket Broker

Use Case

Objective

To create a new BPaaS Bundle in draft state into the Bundle Repository, and to

immediately start editing that bundle via the Bundle Designer.

Pre-Conditions The BPaaS Design Package needed by the CloudSocket Broker is stored in the BPaaS

Design Environment in order to be selected using the Bundle Instantiator.

Process Dialog 1. The CloudSocket Broker launches the Bundle Instantiator.

2. The Bundle Instantiator invokes the BPaaS Design Environment API to get a list of

the existing BPaaS Design Package along with meta-data to group and filter them.

3. The CloudSocket Broker uses the Bundle Instantiator browsing functionality to find

and select the desired BPaaS Design Package.

4. The CloudSocket Broker issues the command to create a new Bundle based on

the selected BPaaS Design Package.

5. The Bundle Instantiator creates a new draft Bundle in memory.

6. The Bundle Instantiator launches the Bundle Designer and provides the new

Bundle as an input parameter (the Bundle is still not persisted).

7. The Broker optionally edits the Bundle using any of the Bundle Editing use cases.

8. The Broker issues the save command assigning a unique name to the new

Bundle.

9. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the Bundle into the Bundle Repository. If the Bundle

is complete (all sections properly configured) then it is marked as Consistent

(therefore eligible for publishing into the Marketplace).

Variations 7.a) If the BPaaS Design Package contains an abstract workflow model, not all Bundle

Editing use cases are available (see the precondition of an use cases to see if it needs

an executable workflow model to perform it).

8.a) The Broker aborts the edit and closes the Bundle Designer without saving.

8.b) A Bundle with the same name from the same Broker already exists in the Bundle

Repository. The save command is rejected.

Post-Conditions A new bundle is stored into the Bundle Repository.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 75 of 184

Diagrams

Figure 24 Use Case Diagram – AE-UC-1 Creation of BPaaS Bundle

Figure 25 Sequence Diagram – AE-UC-1 Creation of BPaaS Bundle

Table 10 BPaaS Allocation Environment – Use Case 1 – Creation of BPaaS Bundle

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 76 of 184

6.2.2 Atomic Service Allocation

Use Case id AE-UC-2-Atomic Service Allocation

Title &

Description

A CloudSocket Broker allocates an abstract Atomic Service involved in the Workflow

Model with one from the compatible concrete Atomic Services matching this service

from the Atomic Service Registry.

The CloudSocket Broker opens a Bundle in the Bundle Designer, enters the Atomic

Service Allocation section, selects one of the abstract services involved in the Workflow

Model, and chooses the concrete Atomic Service to be mapped to this abstract service.

The concrete Atomic Services to be selected constitute a subset of services in the

Atomic Service Registry which are compatible with the abstract Atomic Service at hand.

Apart from the mapped/selected concrete atomic service, the other candidate ones

matching the abstract service are also listed in the bundle description along with their

pricing and SLA for adaptation purposes. Adaptation rules are then provided to indicate

when the selected concrete atomic service will be substituted with the remaining

candidate ones and according to which criteria.

NOTE: for some abstract Atomic Services, the mapping to one compatible concrete

Atomic Service (e.g., stateful, hard-to-reallocate services) will be unmodified-able once

the BPaaS bundle is deployed. This actually maps to the inability to perform a service

substitution or any other related adaptation action for such a service. As such, no

adaptation rule can be specified for such a service.

NOTE: In some cases, the selection of a concrete atomic service for an abstract one

will be delayed until runtime. In such cases, the adaptation/selection rules will indicate

which concrete atomic service is to be selected according to the current context.

An example of an Atomic Service Allocation record - in case of delayed runtime

selection - could be:

Actors CloudSocket Broker

Use Case

Objective

To select a concrete atomic service for each abstract atomic one as well as map the

abstract atomic service to a set of alternative concrete atomic services for adaptation

purposes.

Pre-Conditions The Bundle exists in the Bundle Repository.

The Bundle has been created by selecting a BPaaS Design Package containing an

Abstract Atomic Service JIRA mapped on

 MyJIRA by provider X in UK (eligible only if its response time in the last

month is less than 400 ms on average)

 BestJIRA by provider Y in Germany (eligible only if its availability in the

last year has been greater than 99%)

 CheapJIRA by provider Z in Russia (eligible only if no other concrete

Atomic Service turns out to be eligible)

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 77 of 184

Executable Workflow Model (and not an abstract Workflow Model).

The Executable Workflow Model in the Bundle contains at least a service task that

invokes an abstract Atomic Service.

The Atomic Service Registry contains at least one concrete Atomic Service compatible

with the selected abstract Atomic Service.

All metric definitions required to configure the eligibility rules for each concrete Atomic

Service to be mapped already exist.

Process Dialog 1. The Broker selects a BPaaS Bundle from the Bundle Browser and opens it into the

Bundle Designer.

2. The Broker enters the Atomic Service Allocator UI component (part of the Bundle

Designer).

3. The Atomic Service Allocator UI shows the list of the abstract Atomic Services

mapping to service tasks in the Workflow Model of the Bundle.

4. The Broker selects an abstract Atomic Service from the list.

5. The Broker issues a command to open the mapping details for the abstract Atomic

Service selected.

6. The Atomic Service Allocator UI invokes a service on the Bundle Manager to

retrieve the list of the concrete Atomic Services which are compatible with the

selected abstract Atomic Service. Compatibility actually means functional and

quality-based matching of abstract to concrete Atomic Services.

7. The Bundle Manager invokes the API of the Repository Manager to retrieve the list

of the concrete Atomic Services which are compatible with the selected abstract

Atomic Service.

8. The Atomic Service Allocator UI shows the list of all the concrete Atomic Services

matched with the selected abstract Atomic Service.

9. The Broker can select a matched concrete atomic service as the one to realize the

abstract Atomic Service. He/she can also define eligibility rules indicating when to

substitute the selected atomic service and according to which criteria (e.g., the less

costly service with the highest availability encountered so far). At least one from the

two aforementioned actions has to be performed (e.g., the first for fixed mappings

and the second for dynamic ones).

10. The Broker repeats Steps 4-9 as desired, possibly until all abstract atomic services

are covered.

11. The Broker confirms the changes and issues the save command.

12. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes, thus updating the Bundle into the Bundle

Repository. If the Bundle is complete (all sections properly configured), then it is

marked as Consistent (therefore becoming eligible for publishing into the

Marketplace).

Variations 8.a) If only one concrete Atomic Service turns out to be compatible with the selected

abstract Atomic Service, then it is selected by default..

8.b) If no concrete atomic service matches the abstract one, this is an indication that the

functionality of the abstract service has to be realized from scratch. In that case, we will

go to the next use case, once the respective software component has been realized

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 78 of 184

and registered in the respective registry.

12.a) The Broker aborts the edit and closes the Bundle Designer without saving.

Post-Conditions The Bundle is updated into the Bundle Repository.

Diagrams

Figure 26 Use Case Diagram – AE-UC-2-Atomic Service Allocation

Figure 27 Sequence Diagram – AE-UC-2-Atomic Service Allocation

Table 11 BPaaS Allocation Environment – Use Case 2 – Atomic Service Allocation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 79 of 184

6.2.3 Software Component Allocation

Use Case id AE-UC-3-Software Component Allocation

Title &

Description

CloudSocket Broker allocates a Software Component

A CloudSocket Broker allocates a Software Component mapped to a Workflow Model

task to a set of VM Offerings from the Cloud Infrastructures registered in the Cloud

Provider Registry and selects one of these offerings as the one on which the component

deployment will be performed by the BPaaS Execution Environment.

The Broker opens a Bundle in the Bundle Designer, enters the Software Component

Allocation section, selects one of the components mapped to Workflow Model tasks,

and then selects the VM Offerings eligible to host this component. The VM Offerings are

selected from the subset of VM Offerings in the Cloud Infrastructure Registry which are

compatible - with respect to its VM requirements - with the Software Component

selected. Each compatible VM Offering is listed along with its pricing and SLA. The

broker selects one of the VM offerings as the one on which the component deployment

will take place. He/she also defines adaptation rules indicating when to move to another

VM (offering) when the currently selected one fails for some reason.

NOTE: For some Software Components only a direct, static mapping to one compatible

VM Offering will be specified, in the end, in case migration for such a component is not

possible (e.g., stateful components for which no migration procedures have been

defined in the Software Component Registry).

An example of a Software Allocation record without adaptation rules could be:

Actors CloudSocket Broker

Use Case

Objective

To allocate a Software Component invoked by the Workflow Model onto a set of

compatible VM Offerings that will actually host the Software Component at run-time.

Only one from the VM offerings is preselected. The other ones are used for

adaptation/migration purposes.

Pre-Conditions The Bundle exists in the Bundle Repository.

The Bundle has been created by selecting a BPaaS Design Package containing an

Executable Workflow Model (and not an abstract Workflow Model).

The Workflow Model contains at least one service task mapping to a Software

Component (which is registered in the Software Component Registry).

The Cloud Infrastructure Registry contains at least one VM Offering compatible

(according to both functional and non-functional aspects) with the selected Software

Software Component SmartOCR mapped on

 VM with 4 cores,core 12 GB RAM, and 25 GB Disk by provider IBM

SoftLayer (always eligible) (preselected)

 VM T2.medium by provider Amazon AWS in Ireland

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 80 of 184

Component.

All the metric definitions needed to specify the adaptation rules for a software

component already exist.

Process Dialog 1. The Broker selects a BPaaS Bundle from the Bundle Browser and opens it into the

Bundle Designer.

2. The Broker enters the Software Component Allocator UI component (part of the

Bundle Designer).

3. The Software Component Allocator UI shows the list of the Software Components

mapping to service tasks in the Workflow Model of the Bundle, highlighting the

Software Components not mapped to VM offerings.

4. The Broker selects a Software Components from the list and issues a command to

open the Software Component selected.

5. The Software Component Allocator UI invokes a service on the Bundle Manager to

retrieve the list of the VM Offerings which are compatible (according to functional

and quality aspects) with the selected Software Component.

6. The Bundle Manager invokes the API of the Repository Manager to retrieve the list

of the VM Offerings which are compatible with the selected Software Component.

7. The Software Component Allocator UI shows the list of all the VM Offerings

matched with the selected Software Component.

8. The Broker can select one from the VM offerings matched as the one on which the

deployment of the software component will take place. The Broker can also define

adaptation rules to indicate which alternative compatible VM offering to select when

the preselected one fails for some reason.

9. The Broker repeats Steps 4-8 as desired possibly until all Software Components

associated to the BPaaS workflow tasks are allocated.

10. The Broker confirms the changes and issues the save command.

11. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes, thus updating the Bundle into the Bundle

Repository. If the Bundle is complete (all sections properly configured), then it is

marked as Consistent (therefore eligible for publishing into the Marketplace).

Variations 11.a) The Broker aborts the edit and closes the Bundle Designer without saving.

11.b) The Broker saves the Bundle with a different name (“save as” command).

Post-Conditions The Bundle is updated into the Bundle Repository.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 81 of 184

Diagrams

Figure 28 Use Case Diagram – AE-UC-3-Software Component Allocation

Figure 29 Sequence Diagram – AE-UC-3-Software Component Allocation

Table 12 BPaaS Allocation Environment – Use Case 3 – Software Component Allocation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 82 of 184

6.2.4 KPI Model Editing

Use Case id AE-UC-4-KPI Model Editing

Title &

Description

A CloudSocket Broker defines a KPI for a given BPaaS Bundle.

The Allocation Tool supports the Broker in exploring the KPIs defined in the Design

Environment and provides features to translate them into technical KPIs that can be

measured by providing all the information needed by the Monitoring Engine (e.g.

formula, schedule, window and so on). It also allows creation of new KPIs, if they are

not designed in the design phase, which can be used, for instance, to define allocation

rules.

The Broker opens a Bundle in the Bundle Designer, enters the KPI Model section and

manages (creates, edits and deletes) the KPI definitions for the Bundle.

Actors CloudSocket Broker

Use Case

Objective

To define which KPI will have to be calculated and evaluated at run-time for a given

Bundle. The KPI could also be used for evaluating the fulfillment of the Bundle’s SLA (in

case it maps to an SLO metric condition) and to assess the (metric) conditions of

eligibility/adaptation rules defined in the Bundle’s Atomic Service and Software

Component allocation sections.

Pre-Conditions The BPaaS Bundle exists in the Bundle Repository.

The Bundle has been created by selecting a BPaaS Design Package containing an

Executable Workflow Model (and not an abstract Workflow Model).

The component metrics for the KPI's composite metric to be specified have already

been defined.

Process Dialog 1. The Broker selects a BPaaS Bundle from the Bundle Browser and opens it into the

Bundle Designer.

2. The Broker enters the KPI modelling section of the Bundle Metadata Editor UI

component (part of the Bundle Designer).

3. The KPI modelling section shows the list of KPIs and the list of KPIs conditions

previously created;

4. The Broker issues a command to create or edit a KPI.

5. The Bundle Metadata Editor UI opens the KPI Editing Dialog. This dialog contains a

text area to edit the KPI name, a text area to edit the KPI formula and a set of

attributes to define the schedule and the window of the KPI:

a. The Bundle Metadata Editor UI invokes a service on the Bundle Manager

to retrieve the list of the raw metrics available for the BPaaS Bundle.

b. The Bundle Manager invokes the API of the Repository Manager to

retrieve the list of the domain-independent raw metrics available on the

CloudSocket platform.

c. The Bundle Metadata Editor UI invokes a service on the Bundle Manager

to retrieve the list of the domain-dependent raw metrics declared in the

Executable Workflow Model.

6. The Broker types the needed KPI information. Support is available for the insertion

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 83 of 184

in the formula of math operators, functions, and raw metrics.

7. The Broker confirms the changes in the edited KPI.

8. The Bundle Manager verifies that the formula of the KPI is syntactically correct.

9. The Broker issues a command to create or edit a KPI condition.

10. The Broker types the needed KPI condition information like the condition name, the

selection of a KPI, the selection of a comparison operator and the typing of the

threshold value.

11. The Broker confirms the changes in the edited KPI condition.

12. The Broker repeats Steps 4-11 as desired to complete the specification of the KPI

Model of the Bundle.

13. The Broker confirms the changes and issues the save command.

14. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes thus updating the Bundle into the Bundle

Repository. If the Bundle is complete (all sections properly configured) then it is

marked as Consistent (therefore eligible for publishing into the Marketplace).

Variations 4.a) The Broker has first to define a new raw metric in the Repository Manager, if

needed, and then the actual composite metric of the KPI.

13.a) The Broker aborts the edit and closes the Bundle Designer without saving.

Post-Conditions The BPaaS Bundle is updated into the Bundle Repository.

Diagrams

Figure 30 Use Case Diagram – AE-UC-4-KPI Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 84 of 184

Figure 31 Sequence Diagram – AE-UC-4-KPI Model Editing

Table 13 BPaaS Allocation Environment – Use Case 4 – KPI Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 85 of 184

6.2.5 SLA Model Editing

Use Case id AE-UC-5-SLA Model Editing

Title &

Description

A CloudSocket Broker defines the SLA for a given BPaaS Bundle.

The Broker opens a Bundle in the Bundle Designer, enters the SLA Model section and

edits the bundle's SLA by also managing (creating, editing and deleting) its SLO

definitions.

Actors CloudSocket Broker

Use Case

Objective

To formally define the SLA guaranteed by the Broker to the potential CloudSocket

Customer who desires to purchase and use the Bundle.

Pre-Conditions The Bundle exists in the Bundle Repository.

The Bundle has been created by selecting a BPaaS Design Package containing an

Executable Workflow Model (and not an abstract Workflow Model).

KPI conditions required to define the SLA Model have been already defined.

Process Dialog 1. The Broker selects a BPaaS Bundle from the Bundle Browser and opens it into the

Bundle Designer.

2. The Broker enters the SLA modelling section of the Bundle Metadata Editor UI

component (part of the Bundle Designer).

3. The Bundle Metadata Editor UI shows the SLA's generic information as well as a

list of the SLOs already defined, along with their respective KPI condition selected.

4. The Broker edits the generic information of the SLA as visualized in the SLA

modelling section.

5. The Broker issues a command to create or edit a SLO.

6. The Bundle Metadata Editor UI opens the SLO Editing Dialog. This dialog contains

a text area to edit the SLO description, a list to select a KPI condition, and a list of

penalties applied if SLO violation occurs.

7. The Broker types all the required information.

8. The Broker confirms the changes in the edited SLO.

9. The Broker repeats the Steps 4-8 as desired to complete the definition of SLA

Model of the Bundle.

10. The Broker confirms the changes and issues the save command.

11. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes, thus updating the Bundle into the Bundle

Repository. If the Bundle is complete then it is marked as Consistent and therefore

eligible for publishing into the Marketplace.

Variations 10.a) The Broker aborts the edit and closes the Bundle Designer without saving.

Post-Conditions The Bundle is updated into the Bundle Repository.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 86 of 184

Diagrams

Figure 32 Use Case Diagram – AE-UC-5-SLA Model Editing

Figure 33 Sequence Diagram – AE-UC-5-SLA Model Editing

Table 14 BPaaS Allocation Environment – Use Case 5 – SLA Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 87 of 184

6.2.6 Pricing Model Editing

Use Case id AE-UC-6-Pricing Model Editing

Title &

Description

A CloudSocket Broker defines the Pricing Model for a given BPaaS Bundle.

The Broker opens a Bundle in the Bundle Designer, enters the Pricing Model section and

manages the Pricing model for the Bundle.

Actors CloudSocket Broker

Use Case

Objective

To formally define the Pricing Model of the bundle dictating the way the respective

BPaaS usage is charged for a broker customer.

Pre-Conditions The Bundle exists in the Bundle Repository.

Process Dialog 1. The Broker selects a BPaaS Bundle from the Bundle Browser and opens it into the

Bundle Designer.

2. The Broker enters the Pricing modelling section of the Bundle Metadata Editor UI

component (part of the Bundle Designer).

3. The Bundle Metadata Editor UI shows generic pricing information like amount,

currency and pricing frequency (e.g. daily, monthly and so on).

4. The Broker edits the generic information of the pricing model.

5. The Broker confirms the changes and issues the save command.

6. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes, thus updating the Bundle into the Bundle

Repository. If the Bundle is complete (all sections properly configured), then it is

marked as Consistent (therefore eligible for publishing into the Marketplace).

Variations 5.a) The Broker aborts the edit and closes the Bundle Designer without saving.

Post-Conditions The Bundle is updated into the Bundle Repository.

Diagrams

Figure 34 Use Case Diagram – AE-UC-6-Pricing Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 88 of 184

Figure 35 Sequence Diagram – AE-UC-6-Pricing Model Editing

Table 15 BPaaS Allocation Environment – Use Case 6 – Pricing Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 89 of 184

6.2.7 Business Process Metadata Editing

Use Case id AE-UC-7 Business Process Metadata Editing

Title &

Description

A CloudSocket Broker defines the Business Process Metadata for a given BPaaS

Bundle.

The Broker opens a Bundle in the Bundle Designer; enters the Marketing metadata

section and edits all the needed marketing-oriented information that could be useful to

the customer (while browsing the Marketplace) in finding the Bundles best fitting his/her

needs.

The Marketing Metadata includes:

1. commercial name of the Bundle;

2. commercial image of the Bundle;

3. business-level functional description of the Bundle;

4. categories of the Workflow Model according to the APQC taxonomy;

5. list of tags;

This information is intended to be used by the marketplace User Interface to present it

to the CloudSocket Customer along with other relevant pieces of information already

contained in the other Bundle sections.

Actors CloudSocket Broker

Use Case

Objective

To define all the additional marketing-oriented information needed by the Marketplace to

support a Business Process User in finding the BPaaS Bundle best fitting his/her needs.

Pre-Conditions The Bundle exists in the Bundle Repository.

Process Dialog 1. The Broker selects a BPaaS Bundle from the Bundle Browser and opens it into the

Bundle Designer.

2. The Broker enters the Business Process Metadata section of the Bundle Metadata

Editor UI component (part of the Bundle Designer).

3. The Bundle Metadata Editor UI opens the Business Process Meta Metadata Editing

Dialog. This dialog contains text areas to edit commercial name, commercial

image, business-level functional description, list of tags and an editor containing a

control to select the APQC categories best describing the Business Process Model

included in the Bundle.

4. The Broker fills the Business Process Metadata Editing Dialog.

5. The Broker confirms the changes and issues the save command.

6. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes, thus updating the Bundle into the Bundle

Repository. If the Bundle is complete (all sections properly configured), then it is

marked as Consistent (therefore eligible for publishing into the Marketplace).

Variations 5.a) The Broker aborts the edit and closes the Bundle Designer without saving.

Post-Conditions The Bundle is updated into the Bundle Repository.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 90 of 184

Diagrams

Figure 36 Use Case Diagram – AE-UC-7 Business Process Metadata Editing

Figure 37 Sequence Diagram – AE-UC-7 Business Process Metadata Editing

Table 16 BPaaS Allocation Environment – Use Case 7 – Business Process Metadata Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 91 of 184

6.2.8 BPaaS Bundle Publishing in the Marketplace

Use Case id AE-UC-8-BPaaS Bundle Publishing in the Marketplace

Title &

Description

A CloudSocket Broker publishes a BPaaS Bundle in the Marketplace.

The Broker publishes a Consistent BPaaS Bundle in the Marketplace so that customers

can purchase, deploy and use it.

Actors CloudSocket Broker

Use Case

Objective

To publish a BPaaS Bundle into the Marketplace and enable customers to view and

eventually buy it (in the case of an executable BPaaS Bundle).

Pre-Conditions The Bundle exists in the Bundle Repository, and it is in the Consistent state.

Process Dialog 1. The Broker selects a BPaaS Bundle from the Bundle Browser and opens it into the

Bundle Designer.

2. The Broker issues the command to publish the BPaaS Bundle in the Marketplace.

3. The Bundle Designer invokes the Bundle Manager to publish the bundle.

4. The Bundle Manager delegates the publication of the Bundle to the Bundle

Publisher.

5. The Bundle Publisher invokes the Marketplace management API exposed by the

Marketplace Environment.

6. The Bundle Manager updates the BPaaS Bundle in the Bundle Repository in order to
mark it as published and saves its date of publication.

Variations 6.a) In case a Bundle with the same name already exists in the Marketplace,

appropriate conflict resolution must be taken, asking the broker to change the name of

the current BpaaS Bundle.

Post-Conditions The BPaaS Bundle is published in the Marketplace and the customer can find and buy it

(in case of an executable BPaaS Bundle) using the Marketplace.

The BPaaS Bundle is marked as Published into the Bundle Repository.

Diagrams

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 92 of 184

Figure 38 Use Case Diagram – AE-UC-8-BPaaS Bundle Publishing in the Marketplace

Figure 39 Sequence Diagram – AE-UC-8-BPaaS Bundle Publishing in the Marketplace

Table 17 BPaaS Allocation Environment – Use Case 8 – BPaaS Bundle Publishing in the Marketplace

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 93 of 184

6.3 Components

The BPaaS Allocation Environment provides the following high-level features: i) creation of new BPaaS Bundle; ii)

search and editing of existing BPaaS bundles; iii) selection of BPaaS Design Package; iv) configuration of

marketing metadata; v) workflow services allocation (for both abstract atomic services and software components);

vi) definition of KPI and SLA Model; vii) publication into the marketplace.

In order to support aforementioned functionalities, the BPaaS Allocation Environment is composed by one main

component called Allocation Tool.

6.3.1 User-interface layer

The User Interface Layer contains the graphical interface components used by the CloudSocket Broker to create,

edit and manage his/her own BPaaS Bundles.

There are three main UI components:

1. Bundle Instantiator

2. Bundle Designer

3. Bundle Browser

The Bundle Instantiator and Bundle Browser are used to choose the input for the Bundle Designer which can

accept a new bundle or an existing one, previously created and saved into the Bundle Repository.

Figure 40 BPaaS Allocation Tool – User Interface Screenshot

Figure 40 indicates two screenshots of the Allocation Tool. The first one indicates that the Allocation Tool starts

from the input of the BPaaS Design Environment, by choosing a BPaaS Design Package and viewing additional

business relevant information. The second one shows the Allocation section containing different sub-sections for

Software Components and Atomic Services Allocation.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 94 of 184

6.3.1.1 Bundle Instantiator

The Bundle Instantiator is the UI component allowing a Broker to create a new draft BPaaS Bundle. Since a

Bundle is conceptually a commercial “packaging” of an executable Workflow Model, the creation of a draft Bundle

necessarily starts with the selection of a workflow model from a BPaaS Design Package retrieved from the

BPaaS Design Environment.

The Bundle Instantiator, therefore, interacts with the BPaaS Design Environment in order to retrieve the list of the

BPaaS Design Packages along with all the available meta-data that might support the Broker in searching and

identifying (if any) the BPaaS Design Packages best fitting his/her needs (actually the needs of the CloudSocket

Customer(s) the Broker is working for or desires to attract).

The BPaaS Design Packages are retrieved using the API provided by the BPaaS Design Environment. The

Bundle Instantiator provides an user-friendly interface allowing the Broker to apply multiple filters based on the

meta-data associated with each Workflow Model, and finally select the preferred one.

Once the Broker has selected a BPaaS Design Package, the Bundle Instantiator creates in volatile memory a

data structure representing a new draft BPaaS Bundle based on that BPaaS Design Package, and it passes such

data structure to the Bundle Designer, which allows the Broker to immediately start the configuration of the

Bundle.

At any time, the Broker can either close the Bundle Designer or discard the changes to abort the Bundle

instantiation, or save the Bundle making it persistent in the Bundle Repository.

Tasks performed by the Bundle Instantiator:

 Browse the BPaaS Design Packages from the BPaaS Design Environment.

 Instantiate a new BPaaS Bundle selecting one BPaaS Design Package.

Main Interfaces of the Bundle Instantiator:

 Input: None. BPaaS Design Packages are retrieved from the BPaaS Design Environment upon user request

- in the end, one BPaaS Design Package is selected to be instantiated.

 Output: a draft BPaaS Bundle, containing only the selected BPaaS Design Package which can be sent to the

Bundle Designer.

6.3.1.2 Bundle Designer

The Bundle Designer is the main UI component of the Allocation Tool. It provides all the functionalities allowing a

CloudSocket Broker to configure (fill or edit) the sections of a BPaaS Bundle and move it from the initial Draft

(incomplete) state to the Consistent (ready to be published) state.

The Bundle Designer includes three main sub-components:

1. Atomic Service Allocator UI: it’s the UI component allowing a Broker to allocate each abstract Atomic Service

invoked by the Executable Workflow Model in the BPaaS Bundle onto a set of compatible concrete Atomic

Services out of which only one will be invoked at run-time, along with the rules for enabling their selection

eligibility. Concrete Atomic Services are selected from the Service Registry of the Repository Manager.

2. Software Component Allocator UI: it’s the UI component allowing a Broker to allocate each Software

Component invoked by the Executable Workflow Model in the bundle onto a set of compatible VM Offerings

out of which only one is selected to host this component. VM Offerings are selected from the Cloud Provider

Registry in the Repository Manager. The Software Component Allocator UI also allows to set adaptation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 95 of 184

rules for each software component in terms of the underlying resources to be exploited (e.g., mapping to

migrate to another VM or scaling-out to a new VM instance in case of increased load).

3. Bundle Metadata Editor: it’s the UI component allowing a Broker to configure all the information needed to

sell the Bundle: a KPI Model, a SLA (based on conditions over existing or newly defined metrics), a Pricing

Model (potentially based on existing metrics and attributes/variables), and Business Process Metadata

required to publish the bundle into the Marketplace and make sure that customers can actually find it and

understand what it does at a very high level (business executive) of abstraction.

Tasks performed by the Bundle Designer are the following:

 Allocate all the abstract Atomic Services invoked by the Workflow Model of the Bundle, and define the

eligibility rules of the selected concrete Atomic Services.

 Allocate all the Software Components invoked by the by the Workflow Model of the Bundle, and define the

respective adaptation rules.

 Edit the Bundle Metadata (KPI definitions, SLA, Pricing Model, Marketing metadata)

 Save the Bundle into the Bundle Repository and contextually change its state from Draft to Consistent or vice

versa, if required.

 Publish the bundle into the Marketplace and contextually change its state from Consistent to Published.

Main Interfaces of the Bundle Designer are:

 Input: a draft Bundle is received from the Bundle Instantiator or an existing one has been selected using the

Bundle Browser.

 Input: a list of concrete Atomic Services is received from the Bundle Manager when the Broker uses the

Atomic Services Allocation UI component.

 Input: a list of VM Offerings is received from the Bundle Manager when the Broker uses the Software

Component Allocation UI component.

 Output: the edited Bundle to be sent to Bundle Manager when the Broker issues the save or the publish

command.

6.3.1.3 Bundle Browser

The Bundle Browser is the UI component allowing a Broker to explore and manage the Bundle Repository. The

component shows to the Broker a list of all the Bundles he/she has created along with their status (Draft,

Consistent or Published) and the date-time of their last update.

The Bundle Browser also features controls to select a Bundle and to either open it in the Bundle Designer for

viewing/editing or to delete it from the Bundle Repository.

When a published Bundle is removed from the Marketplace, the same Bundle in the Bundle Repository changes

its state from Published to Consistent, so that it can be edited again.

Tasks performed by the Bundle Browser:

 Browse the BPaaS Bundles related to the authenticated broker, which have been stored into the Bundle

Repository.

 Enable the editing of a BPaaS Bundle.

 Duplicate an existing BPaaS Bundle.

 Delete an existing BPaaS Bundle

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 96 of 184

Main Interfaces of the Bundle Browser:

 Input: a list of Bundle descriptors is retrieved from the Bundle Repository Manager, in order to allow the

Broker to browse the content of the Bundle Repository.

 Input: a Bundle is retrieved from the Bundle Repository Manager when the Broker selects the Bundle and

issue the open/edit command.

 Output: a Bundle identifier is sent to the Bundle Repository Manager when the Broker selects the Bundle and

issues the delete command.

 Output: a Bundle is sent to the Bundle Designer to open/edit the Bundle.

6.3.2 Business-logic layer

The Business-logic layer provides functionalities to the User-interface layer. It includes the following components:

1. Bundle Repository Manager

2. Bundle Manager

3. Bundle Publisher

6.3.2.1 Bundle Repository Manager

The Bundle Repository Manager acts as a management interface to the Bundle Repository for all the other

components of the Allocation Tool. It provides all the functionalities to list and search the contents of the Bundle

Repository, to load a bundle in memory, to save a bundle in the Repository and to delete a bundle from the

Repository.

It is responsibility of the Bundle Repository Manager to let each Broker access only its own bundles as well as to

allow only legitimate state transitions and actions to be executed over the bundles of a certain broker.

Tasks performed by the Bundle Repository Manager:

 Provide a list of descriptors of the bundles in the Bundles Repository.

 Search for a bundle in the Bundle Repository.

 Load a bundle from the Bundle Repository into the memory.

 Save a bundle from the memory into the Bundle Repository.

 Delete a bundle from the Bundle Repository.

 Change the state of a bundle.

Main Interfaces of the Bundle Repository Manager:

 Input: receives from the Bundle Browser the identifier of a bundle to be loaded in memory (loaded from the

Bundle Repository)

 Input: receives from the Bundle Browser the identifier of a bundle to be deleted from the Bundle Repository.

 Input: receives from the Bundle Manager a bundle in memory to be saved into the Bundle Repository.

 Input: receives from the Bundle Browser or Manager a request for changing the state of a bundle

 Input: receives from the Bundle Browser a search condition for searching and identify one or more bundles

stored in the Bundle Repository

 Output: sends (to the Bundle Browser) a list of descriptors of all bundles or those matching the search

conditions/criteria provided in the Bundle Repository.

 Output: sends (to the Bundle Browser) a bundle to be loaded in memory.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 97 of 184

6.3.2.2 Bundle Manager

The Bundle Manager implements all the business logic required by the Bundle Designer UI and its sub-

components.

It manages the BPaaS Bundle in memory, making sure that all the sections of the Bundle’s data structure are

properly aligned at any time (i.e., no invalid cross-references, overall data structure consistency) and contain only

allowed values.

The Bundle Manager also detects when a Bundle has been completely configured (i.e., configured with at least

the minimal but sufficient information required to be published) and performs the transition from the Draft to the

Consistent state or vice-versa (depending on the previous and new level of configuration).

Tasks performed by the Bundle Manager:

This server-side component manages in memory the Bundle currently edited by the Broker. The Bundle Manager

interacts with the following components:

 the registries (Software Component Registry, Cloud Provider Registry, VM Offering Registry, Abstract Atomic

Service Registry, Concrete Atomic Service Registry and Metric Registry). Note: the registries are not

accessed directly by the Bundle Designer because the raw lists provided by each registry must be pre-

filtered in order to isolate only the registry items which are compatible with the bundle in memory;

 the Bundle Repository Manager, which is responsible for loading/saving the bundles from/to the Bundle

Repository;

 the Bundle Publisher, which is responsible to interact with the Marketplace management API in order to
publish a bundle.

Main Interfaces of the Bundle Manager

 Input: receives from the Bundle Designer a Bundle in memory when the Broker issues the save command

(the Bundle is forwarded to the Bundle Repository Manager).

 Input: receives from the Atomic Service Registry a list of Atomic Service descriptors.

 Input: receives from the Cloud Provider Registry a list of VM Offering descriptors

 Output: sends (to the Bundle Browser) a list of descriptors of the Bundles in the Bundle Repository.

 Output: sends (to the Bundle Repository Manager) the Bundle in memory to be saved.

6.3.2.3 Bundle Publisher

The Bundle Publisher is responsible for publishing the BPaaS Bundle in the Marketplace. The Bundle Manager

forwards to the Bundle Publisher the Bundle currently in memory and delegates the latter component to perform

all the interactions with the Marketplace management API required to get the Bundle published.

If the publishing operation succeeds, the Bundle Manager changes the state of the Bundle from Consistent to

Published and sends it to the Bundle Repository Manager in order to make the state transition persistent.

The Bundle Publisher allows also the update of a Bundle already published in the Marketplace with the same flow

followed in case of the first publication.

Tasks performed by the Bundle Publisher: this server-side component is responsible to publish a Bundle into the

Marketplace.

Main Interfaces of the Bundle Publisher:

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 98 of 184

 Input: receives from the Bundle Manager a Bundle in memory

 Output: sends to the Marketplace all the input parameters required by the Marketplace management API for

the bundle publishing.

 Output: state change of bundle to be persisted

6.3.3 Persistency-management layer

The Persistency-management Layer contains the Bundle Repository where the BPaaS Bundles are stored. The

Bundle Repository is multi-tenant so that each CloudSocket Broker can browse and edit only the BPaaS Bundles

owned by him/her.

6.3.4 Component Diagram

Figure 41 Allocation Tool – Component Diagram

6.3.5 Research Prototypes

In the context of Deliverable D3.3 “BPaaS Allocation and Execution Environment Blueprints” the following

research prototypes are introduced as optional components.

6.3.5.1 Smart Service Discovery and Composition Tools

The Smart Service Discovery and Composition Tools (D3.3 2016, sections 3.2, 3.3) can increase the automation

level in the BPaaS Allocation Environment by enabling the automatic matchmaking and selection of both SaaS

and IaaS services in a conjunctive manner by also taking into account the broker’s functional and non-functional

constraints. These tools comprise: (a) a semantic functional and non-functional matchmaker which can be

exploited in a standalone manner in case that the broker requires to discover the services that functionally and

non-functionally match the BPaaS workflow task. The services discovered can be ranked such that the broker

can select the one that best suits his/her functional requirements. The same matchmaker can also be used for the

discovery of IaaS services that can support the internal service components of certain BPaaS workflow tasks; (b)

a concurrent SaaS and IaaS selection tool which is able to exploit the matchmaker in order to find those services

per BPaaS workflow task that can satisfy the local functional and non-functional broker requirements as well as to

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 99 of 184

then produce and solve a constraint optimisation problem which attempts to discover in conjunction the best

external SaaS service from the candidate ones for each BPaaS workflow task as well as the best IaaS services

from the candidate ones to support the internal service components for certain BPaaS workflow tasks by of

course considering the broker’s global non-functional requirements. The latter tools draw the respective content,

actually mapping to cloud service advertisements, supporting their functionality from the Registry.

While D3.3 partly covers the architecture of the first tool, the semantic matchmaker, a combined architecture is

now reported on this deliverable which can be seen in Figure 42. This architecture comprises three main

components: (a) a front-end which assists the broker in graphically specifying the BPaaS allocation information in

terms of a BPaaS bundle. This component can be surely replaced by the actual BPaaS Allocation Environment

implementation which includes a quite sophisticated front-end; (b) the semantic matchmaker which is called as

Unified (meaning covering both functional and non-functional service matchmaking) Service Discovery Tool; (c)

the global IaaS & SaaS service selection tool which is called Service Concretisation Tool.

Figure 42: The architecture of the Smart Service Discovery and Composition Tools

For the latter tool, the internal architecture is exposed comprising three main components: (a) the REST-API

which exposes the service concretisation functionality offered; (b) the Transformer which is responsible for

obtaining the appropriate input from various sources (e.g., cloud service offerings, broker requirements), by also

calling the appropriate components (e.g., Registry for the offerings, the Unified Service Discovery Tool for service

candidates per BPaaS workflow task), as well as for generating the actual constraint optimisation problem to

solve; (c) the Constraint Solver which solves the problem and reports back the solution discovered.

As D3.3 does not yet cover also the complete architecture of the Unified Service Discovery Tool, this architecture

is depicted in Figure 43. It includes seven main components: (a) the REST-API which exposes the functionality

for registering and matchmaking functional and non-functional specifications of services; (b) the Specification

Processor which takes care of the syntactic, semantic and constraint-based validation of the service

specifications issued via the REST-API as well as the alignment of these specifications according to a basic set of

non-functional terms; (c) the Compositor orchestrates the functional and non-functional registration and

matchmaking of services in a transactional manner by ensuring that when an aspect-specific registration fails,

then the system roll-backs to its previous state; (d) the Functional Matchmaking Tools comprising mainly one

component, the Functional Matchmaker; (e) the Non-Functional Matchmaking tool which includes components for

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 100 of 184

performing either ontology subsumption-based or constraint-based matchmaking of services (see also additional

details in D3.3); (f) the Combined Registry which ensures that suitable URI entries exist per service covering both

functional and non-functional entries by also assisting in achieving transactionality during service registration; (g)

the Semantic Repository which is a semantic version of the Registry (meaning that respective information from

this registry is drawn, semantically transformed and then stored into the Semantic Repository) covering mainly

the semantic specification of services.

Figure 43: The architecture of the Unified Service Discovery Tool

6.3.5.2 DMN-to-CAMEL-Mapper

The DMN-to-CAMEL-Mapper1 reduces the technical complexity of the software component allocation (cf. “AE-

UC-4-Software Component Allocation”) by mapping high-level business requirements to the low-level technical

description. As business experts still require technical assistance for consuming cloud services and allocating the

software components, the DMN-to-CAMEL-Mapper aims to create a way to semi-automatically handle the

software component allocation and configuration based on high-level parameters. This approach enables the

modelling of cloud applications by using non-technical business values, which will be mapped to a technical

description, namely CAMEL, by using the Business Knowledge Model (BKM) in combination with Decision Tables

(DT) of the Decision Model and Notation (DMN) standard (OMG 2015).

Figure 44 depicts a high-level view on the architecture of the DMN-to-CAMEL-Mapper. The component is

accessible via a REST API and requires a set of business requirements. These requirements will be mapped to

predefined and reusable DMN tables and the DMN Execution Engine processes the respective DMN tables by

transforming the business requirements into technical CAMEL fragments. As a CAMEL model comprises of

multiple sub-models, the CAMEL Composer assembles the CAMEL fragments into one CAMEL model, which is

returned as result.

1 See D3.3 BPaaS Allocation and Execution Environment Blueprints, chapter 3.4

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 101 of 184

Figure 44 - DMN-to-CAMEL-Mapper Architecture

6.4 Roles

The CloudSocket Broker is an organization whose business involves creating BPaaS Bundles and selling them to

CloudSocket Customer via the Marketplace. The CloudSocket Broker (actually the users of this organisation or a

technical consultant hired) creates the bundles starting from a BPaaS Design Package selected from the BPaaS

Design Environment.

If a CloudSocket Broker does not find a convenient BPaaS Design Package to create a BPaaS Bundle, then

he/she could involve one or more consultants and delegate to them the creation of a new BPaaS Design Package

by means of the BPaaS Design Environment.

The CloudSocket Broker gets paid by the BPaaS Customer who purchases the BPaaS Bundles that have been

published in the Marketplace. It is responsibility of the CloudSocket Broker to make sure that each BPaaS Bundle

published in the Marketplace has a Pricing Model covering the costs for executing the bundle, and a SLA to be

met by the bundle, taking into account pricing and respective SLAs of all external resources (concrete Atomic

Services and VM offerings) used by the bundle.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 102 of 184

6.5 Data Interface

The input of the Allocation Environment is a BPaaS Design Package described in paragraph 4.2.2.1 and 5.6.

The output of the BPaaS Allocation Environment is a BPaaS Bundle, represented as a JSON file containing a

section for each of the following information (if it is executable):

o Business Process Model

o Executable Workflow Model

o Atomic Service Allocation

o Software Component Allocation

o KPI Model

o SLA

o Pricing Model

o Marketing Metadata

In case of abstract BPaaS Bundle, the output contains the following information:

o Business Process Model

o Abstract Workflow Model

o Pricing Model

o Marketing Metadata

Allocation-related information and metrics are represented according to the CAMEL (CAMEL 2015) language.

The eligibility/adaptation rules are expressed in the SRL (Scalability Rules Language) (SRL 2015) language

which is also part of CAMEL. These two languages have been defined in the context of the PaaSage project

(PaaSage 2015). They have been extended in order to express extra information in different aspects that is

needed for supporting the deployment, allocation, and adaptation of BPaaS.

With respect to the research prototpyes, the SLA can conform to a combination of WS-Agreement (WS-

Agreement 2015) and OWL-Q (OWL-Q 2015), where OWL-Q is used for semantically annotating (and thus

providing indirectly their formal specification) the metrics referenced in the conditions of SLOs in the WS-

Agreement specifications. Alternatively, OWL-Q can be exploited in a standalone manner as it is able to specify

SLAs. In this latter case, if existing SLA Management components are in place to be used in the Execution

Environment which operate over WS-Agreement, we could have transformation code which is able to transform

OWL-Q SLA specifications to WS-Agreement ones.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 103 of 184

7 BPAAS EXECUTION ENVIRONMENT

7.1 Introduction

The execution environment consists basically of:

 the deployment/cloud provider engine of BPaaS

 the execution engine of BPaaSs

 the monitoring engine covering the different levels (business, workflow, service, infrastructure)

 the SLA engine to assess the conformance to agreements

 the adaptation engine to adapt the BPaaS to still fulfil the requirements posed to it

 the associated Web-GUI environments to cover the different components

Besides these execution and follow-up mechanisms, the execution environment has:

 The adaptation mechanisms to maintain the different levels of the quality for BPaaSs.

The environment is responsible to manage, monitor and adapt the execution of the BPaaS bundles generated

during the allocation phase, which have been published via the Marketplace. Hence, the main functional

capability is to guarantee the execution and the suitable behaviour of the deployed BPaaSs. To this end, the

environment is responsible to deploy and configure all components required to execute the bundles, which

comprise the workflow, SLA, adaptation rules, and details of the third-party services involved. When a BPaaS

workflow bundle is deployed, the environment will allow to manage an end-user's workflow instances and to

visualize the conformance levels to associated agreements and the respective monitoring data. Besides, based

on the monitoring data, the violations incurred as well as the BPaaS bundle adaptation rules, the environment will

be able to adapt the BPaaS instances to maintain the promised service level through executing particular

adaptation actions, including component scaling, component/workflow migration and service substitution, possibly

across different levels.

The main roles involved in the execution phase and thus to this environment are: i) the CloudSocket Operator

who is providing and maintaining the environment to manage BPaaSs; ii) the CloudSocket Broker who is

responsible for designing and publishing BPaaS bundles in the CloudSocket; This broker will also be able to

check the SLA agreement status as well as find root causes of problematic situations in order to adapt a BPaaS

and of course it is responsible for designing suitable adaptation rules in order to address such problematic

situations; iii) CloudSocket Customer, a user of an end-user organisation which is assigned with the task to find,

purchase and manage the different BPaaS bundles to be used by his/her organisation, iv) Knowledge Worker

which represents a certain employee of an end-user organisation that is mainly involved in the interaction with the

BPaaS workflow instance, when a manual task is assigned to him.

As there is also a need to compute and assess KPIs in the context of checking overall BPaaS goals as well as for

optimizing BPaaS, the monitoring and contextual data produced by the BPaaS Execution Environment should be

transferred on demand to the BPaaS Evaluation Environment which covers the next phase in the BPaaS life-

cycle. Such data, apart from KPI assessment, can be used to discover interesting patterns or optimisation

suggestions in the context of one or more BPaaS.

The following components can be distinguished to fulfil the aforementioned functional capabilities of the BPaaS

Execution Environment: i) graphical interface components which can be exploited in order to view the status and

manage BPaaS workflow bundles as well as inspect the conformance level of service level agreements and

visualize respective monitoring information, ii) a Workflow Engine, to manage the execution of deployed BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 104 of 184

workflows, iii) an SLA Engine to check the conformance levels of the agreements between the CloudSocket

Brokers and the CloudSocket Customer and produce respective violation events to be consumed by the

component responsible for BPaaS adaptation, iv) a Monitoring Engine to monitor the BPaaS quality at all levels

as well as sense the respective contextual information, v) an Adaptation Engine to trigger rules based on the

contextual monitoring data and SLO violation events and perform the respective adaptation actions required to

maintain the quality of service of a BPaaS, vi) a Mediator to map and transform the output data of one service to

the input data of the subsequent service for a BPaaS workflow to guarantee the normal continuation of the

BPaaS workflow in case of service substitutions or workflow re-concretisation, vii) the Cloud Provider Engine to

deploy the BPaaS according to the respective bundle's deployment plan possibly in multiple clouds and to

manage the lifecycle of the components deployed.

7.2 Functional Capabilities

The following scenarios identified in the BPaaS Execution Environment detail the high level functionalities that are

needed to cover the complete lifecycle in the execution phase. These scenarios are depicted using the UML

nomenclature.

Based on the different scenarios, we can identify the following list of functionalities:

 Deployment of predefined BPaaS bundles according to their enclosing deployment plan, which have

been published via the Marketplace.

 Management of the deployed BPaaSs, through the graphical user interface.

 Execution of the deployed BPaaSs.

 Monitoring of the BPaaS execution environment across all levels.

 Management and assessment of the service level agreements.

 Evaluation of the adaptation rules based on BPaaS monitoring and contextual data.

 Multi cloud reconfiguration in the context of adaptation rules for IaaS/PaaS2/SaaS and BPaaS levels.

7.2.1 Deployment of BPaaS

Use Case id EE-UC-1-Deployment of BPaaS

Title &

Description

Deployment Business process as a Services.

The CloudSocket Customer has identified the BPaaS bundle that fulfils his/her needs. The

user selects and purchases it in the Marketplace, and after some possible user and account

management steps, the BPaaS deployment is started. Then, the environment is configured

to support this BPaaS bundle and all necessary components are deployed. Afterwards, the

organization can access and manage the underlying workflow of the BPaaS bundle.

During the BPaaS deployment according to the respective deployment plan in the bundle,

the CloudSocket Customer can follow up the status of their selected BPaaS deployment in

terms of which deployment task is currently executed and which ones have already been

completed, where such tasks can include the deployment of VMs and software components

and their configuration and the deployment of monitoring sensors. Besides, the

CloudSocket Broker can also monitor the status of all deployments and the environment to

guarantee the correct behaviour.

2 See D3.3 BPaaS Allocation and Execution Environment Blueprints, chapter 4.1

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 105 of 184

Actors CloudSocket Customer and CloudSocket Broker

Use Case

Objective

Deploy the selected BPaaS bundle in the BPaaS Execution Environment.

Pre-

Conditions

The CloudSocket Customer and his/her organization have already been registered in the

environment.

All accounts and agreements with third parties whose services are to be exploited in the

context of the current BPaaS have been previously generated and achieved, respectively. It

is the responsibility of the Marketplace to manage or validate the associated prerequisites of

the BPaaS bundle.

The user identification is delegated to the authentication mechanism of the Marketplace in

order to allow the single sign on of these users across the different components with which

the user will interact in the same or different environments.

The CloudSocket Customer has already purchased the bundle and as all pre-requisites are

fulfilled, he/she can initiate the bundle deployment in the BPaaS Execution Environment.

Process

Dialog

 The CloudSocket Customer initiates the BPaaS bundle deployment and accept the

conditions of the service.

 The deployment operation starts configuring the whole BPaaS environment and

deploying all necessary components.

o Deploy the associated software components included in the workflow of the

BPaaS by first creating the respective VM(s) in the selected Cloud Providers

and then deploying and running the necessary component software.

o Configure the monitoring environment, by deploying the different

probes/sensors across the appropriate VMs (e.g., software component VM,

Workflow Engine VM, etc.) in which they should be situated.

o Configure the associated rules and conditions, which are defined in the

BPaaS bundle, and distribute them or their corresponding parts to suitable

components of the BPaaS Execution Environment.

o If all the previous actions are successfully performed, such that all the

internal and external services are reachable and the environment is

configured correctly to monitor and follow up the agreements defined for this

BPaaS at the different levels, then the environment deploys and configures

the BPaaS workflow defined in the bundle.

o Create the agreement associated to this BPaaS Bundle, which has been

previously accepted by the customer, and start to follow up it.

 The BPaaS bundle is deployed, the agreement is confirmed and they are available

for the CloudSocket Customer.

Variations If something happens along the deployment process:

 The failure semantics, included in the deployment plan of the respective BPaaS

bundle, are followed. This can mean rolling back to the initial state or dealing with

local deployment problems through adaptation (e.g., select another VM from a

different provider to instantiate).

 The CloudSocket Broker can analyse the problem in order to resolve it and notify it to

the BPaaS Customer.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 106 of 184

During the deployment process, the different actors can see the status of the BPaaS

bundles in order to follow them up. The environment includes different levels of details

depending on the technical skills of the roles:

 A technical role in the CloudSocket Customer Organization can just see what is the

overall status (e.g., pending) of the deployment, especially if he/she does not have

the appropriate knowledge to understand the respective details.

 The CloudSocket Broker needs to see all details (for example, which step is currently

executed, what were the previous steps, what was the final state of these steps) in

order to check if a problematic situation not previous anticipated has been reached. If

the failure actions cannot handle this situation, then the CloudSocket Broker needs to

go to the allocation phase in order to modify the corresponding deployment plan of

the bundle.

Post-

Conditions

The BPaaS bundle is ready to be used.

Diagrams

Figure 45 Use Case Diagram – EE-UC-1-Deployment of BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 107 of 184

Figure 46 Sequence Diagram – EE-UC-1-Deployment of BPaaS

Table 18 BPaaS Execution Environment – Use Case 1- Deployment of BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 108 of 184

7.2.2 Execution of the BPaaS

Use Case id EE-UC-2 – Execution of the BPaaS

Title &

Description

Execution of the Business Process as a Service

The CloudSocket Customer, who is responsible for managing the business process of the

BPaaS for his/her organization, desires to launch a new business process. He/she identifies

it on the Marketplace and selects it in order to create an instance and launch it. Then, the

business process instance is executed step by step, following the definition of the

respective workflow in the BPaaS bundle. The BPaaS Execution Environment and the

Workflow Engine in particular, is responsible for managing all the tasks and orchestrate the

workflow.

There are two main types of tasks:

 Automatic tasks are managed by the environment, without any human intervention.

They can be processed internally or through external services (atomic services),

which are provided by third party cloud providers (registered previously in the

registry). The system doesn’t need to interact with Knowledge Workers in order to

fulfil the respective task execution.

 Manual tasks managed by Knowledge Workers, belonging to the CloudSocket

Customer organisation. The environment just have to know when the task has

been executed and what was the output produced. This involves the respective

interaction between the Knowledge Workers and the UI (in alignment with the

Workflow Engine) to indicate the task end and upload the respective output, if

needed. The tasks assignment could correspond to employees of different

departments of the end-user organization which are mapped to the role of

Knowledge Worker. Different types of manual task assignment are planned to be

supported.

During the workflow execution, the environment monitors the workflow at the different

levels, namely IaaS, PaaS, SaaS and BPaaS. If the environment detects any SLO violation,

it informs the Adaptation Engine which analyses such violations along with any other

contextual information and decides if it is needed to act through executing the adaptation

plan of a certain adaptation rule leading to the execution of some adaptation actions,

including the substitution of services or the scaling of software components, in order to

maintain the quality of service level promised.

Actors CloudSocket Broker and CloudSocket Customer each one involving technical roles (e.g.,

System Architects and Knowledge Workers, respectively).

Use Case

Objective

Execute and orchestrate the deployed BPaaS, making use of the authorisation policies,

which depend on the organizations and their security permissions (operational, technical,

human interaction)

Pre-

Conditions

The user identification is delegated to the authentication mechanism of the Marketplace to

enable single sign on for the users desiring to interact with the components of the BPaaS

Execution Environment. The workflow of the BPaaS has been correctly deployed and the

environment has been accurately and properly configured.

Process The CloudSocket Customer desires to see the deployed business processes in the

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 109 of 184

Dialog Workflow Dashboard

 The Workflow Engine Dashboard identifies the CloudSocket Customer with the

assistance of the Marketplace (by e.g. exploiting authentication tokens or any kind of

user authentication proof) and returns the list of deployed business processes for

only this company.

 The CloudSocket Customer launches a new instance of the deployed workflow.

 The environment starts a new instance for this workflow, which has been previously

deployed.

 The CloudSocket Customer can manage the workflow instances generated (e.g.,

suspend, resume and cancel).

 The workflow is executed in a step by step according to the control flow of its

specification in the BPaaS bundle by differentiating between the running of the two

aforementioned types of tasks as follows

o For service tasks, the following two alternative cases apply:

 Internal execution, where software or scripts have to be executed.

It is managed by the Workflow Engine in order to cover the task’s

behaviour, without calling third party services.

 Running Exposed services (external or internal) to cover the

functionality of the task, which are identified by an endpoint. The

Workflow Engine does some internal activities to finalize the

handling of the task and then moves to the next task in execution

o Manual Tasks: These tasks should be managed by Knowledge Workers as

follows:

 Depending on the type of assignment, the Knowledge Worker

either receives, in the inbox, the pending tasks to be dealt with or

selects a task not yet assigned to him and any other worker.

 The Knowledge Worker manages the manual actions and finalizes

the task.

 The Workflow Engine finalises the task, also processing the user-

generated data (which have been uploaded) and goes to the next

step at the defined workflow.

 Monitoring Engine collects metric measurements so as to monitor the BPaaS

instance across different levels.

 The collected monitoring data can be visualized through the dashboard; depending

on the actor the information shown will be more detailed.

o The CloudSocket Broker can access all the information related with the

executed workflow instances in the environment. This level of detail is

necessary for analysis and improvement reasons, covering cases of

identifying problems and correcting them or optimizing a BPaaS bundle

based on the previous adaptation history.

o The CloudSocket Customer can only access information of the associated

instances of his/her end-user organization. He/she needs to know, at a high

level, the workflow instance status and the origin of the problems (if any).

 The SLA Engine analyses these measurements in order to identify possible SLO

violations which are part of the agreed SLAs when the purchase is done.

 The SLA Engine communicates SLO violations to the Adaptation Engine.

 Moreover, the Adaptation Engine also receives the notifications for the subscriptions

of the metric conditions or SLO, directly from the Monitoring Engine.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 110 of 184

 The Adaptation Engine analyses the conditions of adaptation rules included at this

BPaaS bundle and executes the respective adaptation actions, when these rules are

triggered, in order to maintain the quality of the service offered.

o If the Adaptation Engine has to perform any kind of adaptation action, it

might need to:

 Suspend the execution of the workflow instance

 Execute the adaptation actions possibly with the cooperation of the

Cloud Provider Engine (adaptation at the infrastructure level) and

the Mediator (adaptation at the service level with data

incompatibility involved).

 Inform the Workflow & Monitoring Engine about modifications at

the workflow, service and infrastructure level

 Resume the execution of the possibly modified workflow instance.

Variations There are variations depending on the type of adaptation actions to be performed:

 The Cloud Provider Engine might not be called

 The Mediator might not be called

 The workflow specification for the suspended instance does not need to be

modified

 The instance might not even need to be interrupted and then resumed.

Post-

Conditions

n.a.

Diagrams

Figure 47 Use Case Diagram – EE-UC-2 – Execution of the BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 111 of 184

Figure 48 Sequence Diagram – EE-UC-2 – Launch/Execute BPaaS instance

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 112 of 184

Figure 49 Sequence Diagram – EE-UC-2 – Reconfiguration environnement

Table 19 BPaaS Execution Environment – Use Case 2 – Execution of the BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 113 of 184

7.2.3 Monitoring of Agreement Status

Use Case id EE-UC-3 – Monitoring of Agreement Status

Title &

Description

Monitoring Agreement

This scenario enables both the CloudSocket Customer and CloudSocket Broker to check

the status of their agreements. Besides, they can see the incurred violations and the details

of the metrics associated to the SLOs.

Actors CloudSocket Customer (Business Engineer) and CloudSocket Broker (Technical

Consultant, Business Consultant).

Use Case

Objective

The aim of this use case it is to detail mechanisms provided to CloudSocket Customers and

CloudSocket Brokers in order to follow up existing agreements in terms of service levels

obtained and to get information about incurred violations, if any. Different levels of details

will be visualized to these actors. While the CloudSocket Customer will have access solely

to information specific to the agreements/SLAs related to BPaaS bundles purchased in

terms of metrics directly referenced by these SLAs, the CloudSocket Broker will be able to

get detailed information of all available agreements of all BPaaS bundles owned across

different levels spanning KPIs for business roles and SLOs for technical roles, allowing to

identify what are the root causes of violations.

Pre-

Conditions

The SLAs are created by the BPaaS Allocation Environment as part of the BPaaS bundle

which has been purchased by the CloudSocket Customer. Through the purchasing, the

customer agrees with the content of the BPaaS SLAs.

Process

Dialog

 During the execution of the BPaaS bundle, it is possible to see the status of the

agreement and the associated monitoring data.

 The CloudSocket Customer desires to check current status of all its active SLAs

through the SLA Dashboard or the CloudSocket Broker wants to check current status

of all active agreements for all BPaaS bundles owned.

 First a list of all existing and active agreements is presented. Below in this section a

detailed definition of what it is considered “active” agreement is provided. The

CloudSocket Customer only can see the active agreements, over which have

visibility, and the CloudSocket Broker can see all of them for all its clients.

 For each agreement the CloudSocket Customer and the CloudSocket Broker can

check the conformance to established agreement terms, after the purchase has been

performed. In case of violations:

o The CloudSocket Customer can see the violation, the respective penalty

and the associated metric information, in a high level description.

o The CloudSocket Broker can also see the violations but in a more detail

level obtaining monitoring information related to the different term values

and analysing more deeply the information to find the root causes. He/She

might also be able to see summaries and statistics over the penalties that

had to be paid.

The SLA implements the following steps:

 When the BPaaS bundle is purchased, the CloudSocket Customer reviews the

agreement and decides if he/she accepts or rejects it.

o In case of rejection, the purchase is cancelled.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 114 of 184

o In case of acceptance, the respective SLA is considered as agreed and the

process continues.

 When the BPaaS bundle is deployed, the monitoring for the associated SLA is

initiated.

 The SLA can be terminated when the respective completion conditions hold. As a

result, the monitoring is also ended in the context of this SLA.

Variations n.a

Post-

Conditions

n.a

Diagrams

Figure 50 Use Case Diagram – EE-UC-3 – Monitoring of Agreement Status

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 115 of 184

Figure 51 Sequence Diagram - EE-UC-3 – Monitoring of Agreement Status

Table 20 BPaaS Execution Environment – Use Case 3 – Monitoring of Agreement Status

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 116 of 184

7.2.4 Workflow Environment Management

Use Case id EE-UC-4 – Workflow Environment Management

Title &

Description

This scenario details the complete management of the workflow engine, including the

deployed workflows and their instances.

This scenario considers covering: i) the management of the own workflow engine for the

CloudSocket Broker; ii) managing lifecycle of the deployed workflows, which have been

defined at BPaaS Bundles, iii) and their instances. These features are not accessible for all

the involved actors, as the CloudSocket Broker will have full access to them while

CloudSocket Customer will have partial access to them:

 The administration aspects related with the Workflow Engine for both CloudSocket

Broker and CloudSocket Customer. While the CloudSocket Customer will only be

able to administer details about its organization, the CloudSocket Broker will be

able to administer such details for any existing organization. The details

managed/administered include

o Edit Organisation associated information

o Management of users registered to a particular organisation

The broker will also be able to manage the data base and its entities.

 The necessary operations to manage and configure the workflows and their

instances for the execution phase. The CloudSocket Customer can manage the

instances of the workflows purchased, while the CloudSocket Broker has full

control over all workflows and instances.

o Workflows management: It consists of managing the lifecycle of deployed

workflows. This management is the responsibility of the CloudSocket

Broker.

 Manage Workflow Instances (launch / stop / destroy). This includes the definition of

tasks which can be both manual and automatic. Both actors can manage this, but

the CloudSocket Customer only can see and manage instances of his/her

organization.

Actors CloudSocket Broker and CloudSocket Customer

Use Case

Objective

Allow to perform necessary operations to configure/manage the Workflow Engine. These

include:

 Deployed workflows (included in the BPaaS Bundles) lifecycle management.

 Workflow Instances management (lifecycle and configuration)

Database, users and organizations management.

Pre-

Conditions

A number of BPaaS Bundles and workflows exist for the CloudSocket Broker. These

bundles/workflows have been already been deployed in the BPaaS Execution Environment.

The users identification is delegated to the authentication mechanism of the Marketplace in

order to enable single sign on for users when requiring to interact with platform/environment

components.

Process

Dialog

This process will happen through interactions with the Workflow Engine GUI.

The administration aspects related with the Workflow Engine:

 CloudSocket Broker will be presented initially with a list of existing organizations.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 117 of 184

Once an organisation is selected, the process will be the same for both actors.

 Edit Organisation details will allow to modify data associated with a specific

organisation. This process will be synchronized with Authentication Engine.

 Management of Users will allow adding, removing and modifying existing users for

a particular organisation. This process will be synchronized with authentication and

authorization, which is covered by the Marketplace.

 In addition to these, it will be possible that the CloudSocket Broker checks the

Database entities that the Workflow Engine is using internally for Workflow

definition and execution.

The necessary operations to manage and configure the workflows and their instances:

 The CloudSocket Broker accesses the Workflow Engine UI where all defined

workflows (defined in BPaaS bundles) and all workflow instances are presented,

for any organization. The CloudSocket Customer can only see the information

related with respect to his/her organisation (and is of course not able to manage

the workflows but just see their information mainly in terms of their specification).

 For any workflow of the BPaaS Bundle, the CloudSocket Broker is able to deploy

and undeploy it. The automatic workflow deployment is part of the overall bundle

deployment as identified in the aforementioned use case. The CloudSocket Broker

can also move workflows from one Workflow Engine to another one, when needed,

provided that a distributed version of the BPaaS Execution Environment exists.

 Regarding workflow execution, the CloudSocket Broker can access the list of all

active workflow instances as well as all details of workflow deployments (process

definitions, images, business rules, etc.). The CloudSocket Customer can only see

the information related with respect to his/her organization.

 The CloudSocket Broker can manage workflow instance lifecycles (launch / stop /

resume/ destroy). The CloudSocket Customer can only manage the instances of

BPaaS bundles purchased.

Variations n.a

Post-

Conditions

n.a

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 118 of 184

Diagrams

Figure 52 Use Case Diagram - EE-UC-4 – Workflow Environment Management

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 119 of 184

Figure 53 Sequence Diagram – EE-UC-4 – Workflow Environment Management

Table 21 BPaaS Execution Environment – Use Case 4 - Workflow Environment Management

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 120 of 184

7.3 Components

The architecture supports a multitier topology to decouple the user interface from the business logic core.

Nevertheless, it depends on the specific component whether to apply more tiers or patterns to create a loosely

coupled design. In the following subsections, the two main layers and their components are analysed, beside

their interactions with the rest of environments.

7.3.1 User Interface workspace

This layer contains all the graphical interfaces components to interact with the users (CloudSocket Brokers, and

CloudSocket Customers). The interface should be mainly web-based, but it could contain other interface

approaches for example for backend configuration. The following components are included at this level.

7.3.1.1 Web UI / Workflow-Engine

Web UI / Workflow-Engine is responsible for interacting with the different actors involved in the lifecycle of a

workflow. The CloudSocket Customer, considered as a tenant, can purchase the business processes, follow up

the different instances and assign their tasks to its employees. Besides, the CloudSocket Broker can manage the

business process for the different tenants by using the graphical user interface. However, the respective

information needed for realizing the underlying functionalities is not stored and managed by this component but

by the Workflow Engine core.

Figure 54 BPaaS Execution Environment – Workflow Engine User Interface

Figure 54 indicates the user interface of the Workflow Engine based on YourBPM.

7.3.1.2 SLA Dashboard

SLA Dashboard is responsible to present summaries of the status of the different agreements between providers

and the consumers (e.g., CloudSocket Brokers and CloudSocket Customers) with respect to how well the service

levels agreed are maintained. The information on agreements and respective violations is collected through the

SLA Engine and just visualized. As indicated above, the SLA Engine realizes the respective logic for SLA

information collection.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 121 of 184

Figure 55 BPaaS Execution Environment – SLA Monitoring Dashboard User Interface

Figure 55 indicates the user interaction of the SLA monitoring.

7.3.1.3 Cloud Provider Engine Dashboard

The Cloud Provider Engine Dashboard provides technical details about the currently running and finished

deployments of the software components and VMs across multiple clouds. This includes cloud specific details

such as location, image or hardware and software component details such as the lifecycle commands and the

communication between multiple software components. The Cloud Provider Engine Dashboard can be accessed

by the CloudSocket Broker to retrieve more technical insights in the actual software component deployments.

Figure 56 BPaaS Execution Environment - Cloud Provider Engine Dashboard

7.3.1.4 Monitoring Dashboard

Monitoring Dashboard is able to show the monitoring data associated to different BPaaS artefacts, such as

atomic services, VMs, workflow engines, and instances of already specified and running workflows (plus their

activities as another type of artefact that can be monitored). Moreover, when something goes wrong and a

violation is generated, the user can drill down to see the performance of the underlying components and identify

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 122 of 184

which ones to blame for this violation. Thus, the SLA Dashboard redirects to the Monitoring Dashboard to see

more fine-grained analysis of the monitoring information but only in the context of the CloudSocket Broker.

Figure 57 BPaaS Execution Environment – Monitoring Dashboard User Interface Mockup

Figure 57 shows the indicated user interface of the monitoring of a workflow on several levels and the

corresponding SLA monitoring. The raw measurements can also be directly viewed in the Cloud Provider Engine

Dashboard along with the technical assets, see Figure 58.

Figure 58 The unprocessed monitoring data in the Cloud Provider Engine Dashboard

7.3.2 BPaaS Middleware

This layer is in charge of managing all business logic and the data bases involved and exposing the

functionalities via respective APIs through which interaction with other components and environments is enabled.

This layer constitutes the core of the BPaaS Execution Environment. There is not a common data layer for each

component in the core, due to the components' complexity and heterogeneity. Hence, each component will

contain its own definition of the data base, internal sublayers and design patterns in order to have a completely

decoupled and scalable environment.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 123 of 184

7.3.2.1 Workflow-engine

It is responsible for managing the deployment, execution and management of the different workflow instances. It

will be multi-tenant leading to executing a workflow instance on behalf of one organisation by also taking care of

the corresponding workflow and organisation data level. This component will expose a REST API interface

allowing programmatic access to the different types of functionalities offered. This interface will be used both to

support user interaction through the Web UI / Workflow Engine component as well as enable interaction with the

rest of environments, e.g., to allow persisting, deploying and executing the business process.

 Tasks:
o Deploy/redeploy a workflow in the workflow-engine, instantiate it and execute it.
o Manage and follow the workflow instances, according to the workflow description in BPMN.
o Interact with manual tasks of the workflow.
o Manage the workflow engine environment.

 Main interfaces:
o Deployment workflow phase:

 Input: BPMN executable file (including the service endpoints for external service
tasks), which is part of the BPaaS bundle defined in the allocation phase, and the
Organization, who has purchased the bundle.

 Output: when creating a new workflow deployment, the identification of the
deployment and its status.

o Execution workflow instance phase:
 Input: actions to be executed (CRUD); for example the identifier of the workflow

instance to be modified (to be suspended/resumed, change the service endpoints).
 Output: Status message indicating the status/result of API method call, for example if

the suspension of the instance request has succeeded or if the service task endpoint

has been changed.

7.3.2.2 SLA Engine

It is responsible to follow up the different agreements created and assigned to the execution of purchased BPaaS

bundles. This component should interact with the Monitoring Engine to obtain the measurements needed to

enable assessment of SLOs. The interaction will be managed by a publish/subscribe mechanism or a pull model

to obtain only the measurements for those metrics that directly map to the SLOs to be assessed. The defined

SLOs will always be mapped to the actual metrics to be collected and supplied by the Monitoring Engine. The

definition of metrics is done in the BPaaS Allocation Environment, where the Business KPIs have to be translated

to the actual metrics pertaining to the monitoring of SLOs. Hence, the BPaaS Allocation Environment generates

and configures the agreements while it is developing the BPaaS bundle. Afterwards, the CloudSocket Customers

can select the appropriated BPaaS bundle in the Marketplace and accept the associated agreement. Then, the

BPaaS Execution Environment needs to enforce the agreement, since the SLA is included in the BPaaS bundle

that the environment receives during the BPaaS deployment.

If any violation arises, the SLA Engine will notify/broadcast to all registered components that are interested to be

informed about the violation of the agreements, like the Adaptation Engine component which requires analysing

adaptation rules and executing the respective actions. Moreover, such violations would be communicated to

external components, such as the accountability and billing components, which would manage the necessary

actions including the enforcement of penalties, discounts and charges.

 Task:
o Subscribe to metrics directly related to SLOs of SLAs
o Generate and store violation events following the boundaries associated to the guarantee

terms/SLOs.
o Manage the agreements and violations.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 124 of 184

o Notify/broadcast to all registered components any violation of the agreements on which they
have subscribed.

o Access to the agreement and violation details, including historical data.

 Main interfaces.
o Purchase phase:

 Input: Template details for the BPaaS bundle.
 Output: Consolidated agreement.

o Deployment phase
 Input: the agreement, included in the BPaaS bundle.
 Output: the confirmation of the agreement enforcement and the status.

o Execution phase:
 Input: The agreement identifier in order to identify its associated metrics.
 Output: The notification of SLA violations, which is composed by the identifier of the

agreement plus what has been violated, how and when (i.e. SLO identifier and
measurement).

7.3.2.3 Monitoring Engine

It is responsible to monitor a BPaaS and correlate/aggregate monitoring data from different levels, from atomic

services or cloud components up to the level of workflows. It will expose an API in order to allow components,

such as the SLA Manager and the BPaaS Evaluation Environment, to draw the information monitored by

subscribing to particular metrics and perform the respective tasks assigned to them. In the case of the SLA

Manager, this will involve performing an SLO evaluation, while, in the case of the BPaaS Evaluation Environment,

this will involve performing background analysis of the monitored information in order to discover interesting

patterns in the context of one or more business processes. The component will cover both raw metrics (direct

measurements provided by deployed sensors or external measurement systems like PaaSs) and aggregated

metrics (formulas to exploit metrics already implemented and produce the respective aggregated measurements).

This component will also handle the monitoring of contextual information which will be handed over (through

exposing a particular API) to the Adaptation Engine to enable it to completely assess adaptation rules.

As metrics are involved in SLO and contextual conditions, it is essential that they need to be defined beforehand

in order to allow the Monitoring Engine to measure them and thus enable the evaluation of such conditions. The

BPaaS Evaluation Environment has an interface to this component via the publish-subscribe mechanism.

The measurement database to store and execute continuous evaluation on monitoring data, will be managed by

a unified API that can be implemented for any time-series database (TSDB). It will be engaged as an abstraction

layer that helps to be able to use the technology, one needs for a specific job. The system can then use on

specific TSDB for e.g. write-intensive activities and another one e.g. for activities the TSDB supports certain

mechanisms, like continuous queries on InfluxDB (D3.3 2016, section 4.2.3.4).

 Task:
o Allow implementation and description of user-defined metrics;
o Metric specification modification leading to changing the monitoring infrastructure/environment,

and new metrics definition for a BPaaS.
o Monitor and aggregate metrics;
o Inform interested parties about fresh metric values through the publish/subscribe mechanism
o Inform interested parties about historical metric values through the use of the REST-API
o Inform interested parties about contextual information

 Main interactions.
o Input: Description of metrics (Sensor configuration for raw metrics and metric formula

description to allow aggregation); Configuration of user-defined metrics (which includes how to
download the implementation, for example as a rar file);

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 125 of 184

o Output: Measurement DB (which can be realized by a time series database or a semantic
database or even both); Context DB (storage & update of contextual information); notification to
subscribers.

7.3.2.4 Adaptation Engine

This component is responsible for the change of the BPaaS deployment (different services, different service

configuration and workflow structure, new services) to resolve the problematic situations identified by adaptation

rules. Different types of adaptations will be performed at different levels of abstraction. In particular adaptation

actions on VMs (deploy, migrate), services (substitute, rebind), workflow tasks (e.g., re-execute, map to different

service composition) and the workflows themselves (recompose workflow) are provided.

The management of the adaptation rules will be covered by a subcomponent called Rule Engine, which is

responsible to take decisions based on the environment variables and the performance levels encountered. So, it

should interact with the Monitoring Engine and the SLA Engine to collect the needed data required for the

evaluation of the rules exploited. The required data include SLO violations communicated by the SLA Engine as

well as contextual information produced by the Monitoring Engine (in which the Rule Engine needs to subscribe).

Such data are required in order to assess SLO and contextual conditions which constitute the left part of

adaptation rules. In case that one or more rules are triggered, the respective adaptation actions will be executed -

based on the settings from the BPaaS Allocation Environment - to maintain the quality of the service promised

and of the experience of the stakeholders by, e.g., migrating services to other providers and deploying software

components over different clouds. Adaptation rules and their respective will be described as workflows of

adaptation actions, that can be processed by the Cloud Provider Engine (D3.3 2016, section 4.3.2).

The need for adaptation will be indicated by the Rule Engine as it possesses the knowledge of the adaptation

rules (covering scalability and the fault-tolerance) and be supported by the Adaptation Engine which includes an

adaptation library of actions that can be exploited to perform the different types of adaptation needed at the

different levels. The Adaptation Engine will need to perform either one or more adaptation actions. In the first

case, it will be responsible for just executing or delegating this action to another component (e.g., Cloud Provider

Manager). In the second case, the actions to be executed will be described in a form of a workflow which will also

dictate the sequence in which the adaptation actions have to be run, hence, there is a need for a (possibly

internal to the Adaptation Engine) workflow engine able to execute the adaptation workflows.

 Task:
o Evaluate adaptation rules which involves assessing contextual and SLO conditions (where the

latter are already evaluated and sent in the form of SLO violations to the Adaptation Engine)
o Manage the execution of an adaptation strategy (in the context of triggering a specific rule)
o Adapt the BPaaS according to the adaptation strategy provided.

 Main interface:
o Input:

 To manage the rules: Violations, Metrics, description of adaptation rules (including
event patterns that lead to their triggering) to adapt a BPaaS, policies for adaptation
(e.g. max amount of VMs or service instances, cost limits), which are specified in the
allocation environment. The following functionalities are covered:

 register adaptation rules,

 modify adaptation rules on demand,

 get adaptation history for a certain BPaaS,

 allow executing personalized/customized adaptations.
 Referencing of the actual adaptation workflow (by the Rule Engine which is a sub-

component of the Adaptation Engine) in rules stored in the Rule Engine, part of the
Adaptation Engine, to allow its instantiation when a respective adaptation need arises.

o Output:
 Result of the executed adaptation.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 126 of 184

7.3.2.5 Cloud Provider Engine

This component is responsible for the complete deployment and lifecycle management of all the required

components of the BPaaS, including software components and VMs across multiple clouds, with transactional

semantics (at least for the deployment part). These capabilities will be managed by different subcomponents of

the Cloud Provider Engine to provide a modular, flexible and scalable architecture. To exhibit these capabilities,

the Cloud Provider Engine will build upon existing functionalities offered through the interfaces exposed by the

cloud providers.

The BPaaS deployment with transactional semantics will be managed by the Deployment Engine, responsible to

deploy, configure and operate all appropriate software on IaaS and PaaS infrastructure (D3.3 2016, section 4.1)

before deploying a workflow in the Workflow Engine. In essence, the Deployment Engine will be responsible for

executing the deployment plan included in the BPaaS bundle by orchestrating all necessary steps. This

deployment plan will not only cover component deployment but also agreement registration and validation,

monitoring infrastructure deployment and configuration, and workflow deployment in the Workflow Engine in order

to guarantee that in the end the workflow of the BPaaS bundle will be ready for execution. If something goes

wrong, then the transactional/failure semantics, which is defined as part of the deployment plan, will dictate what

actions will have to be performed to remedy for this, which could involve rolling back the system or compensating

previous deployment actions and performing new ones with the same goal.

The Cloud Provider Engine will expose two interfaces: (a) an interface to enable the performance of re-

deployment actions in order to interact with the Adaptation Engine component, and (b) an interface to interact

internally with the Deployment Engine for managing deployment transactionally.

The Deployment Engine sub-component will comprise different plug-ins to connect to the different clouds (by also

exploiting previously generated end-user cloud credentials), allowing to interact with these clouds to execute a

common action as, e.g., the concrete deployment actions for a VM will be different depending on the cloud

provider, but the actual abstract action is the same: deploy a VM. Hence, this sub-component will allow providing

an abstraction over the different specificities of cloud providers with respect to cloud management actions and it

will be responsible for transforming abstract management actions to cloud-specific ones.

 Task:
o Manage the complete BPaaS deployment.
o Manage and abstract from current IaaS capabilities.
o Manage the relationships with the different cloud providers and across different cloud service

levels (IaaS/PaaS)
o Offer scaling & migration capabilities to the Adaptation Engine

 Main interfaces
o Input:

 Deployable workflow (BPaaS bundle):

 BPMN executable file (including the endpoints services of the services tasks)

 SLA agreement definition (mapping the Service Level Objectives to
measurable metrics)

 List of applicable (adaptation) and alternatives rules to be applied

 Semantic Metadata (describing metrics or adaptation actions) to allow taking
decisions in the execution phase.

 Deployment plan along with transactional semantics, deployment actions to be
executed in the context of an adaptation rule which are dictated by the Adaptation
Engine (as part of the BPaaS bundle)

o Output: The result of executing the deployment plan.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 127 of 184

7.3.2.6 Process Data Mediator

The component is responsible for mapping output data of one component/service to the input data of a

subsequent component/service in execution and performing the respective data integration/transformation in

order to guarantee an error-free execution of the workflows. It will rely on ontology based mapping (when the IO

of the process activities/components is annotated via ontology concepts during the design of the business

process and workflow) as well as data mapping and transformation techniques (even in case where no ontology

annotations are provided by relying on the schemata of the data involved - we can assume XML schemata here).

The following scenarios through the use of such component are foreseen.

 At design time, when the complete BPaaS workflow has been generated, it can include the specification
of data transformation tasks. The process data mediator offers an API through which the respective
required transformation tasks can be realized while external data transformation services could also be
alternatively exploited.

 At design time, when the BPaaS workflow has been completed but there is no specification of any
transformation task for data incompatible services, there can be some annotations mapping data to
ontology concepts and also indicating that the output data of one service has to be mapped to the input
data to the next service. Such annotations can then be exploited by the workflow engine in order to
interrupt the workflow execution, run the respective API method of the Process Data Mediator, and once
this is done, use the transformed data as input to the next service after of course the respective workflow
execution is resumed. The API method of the Process Data Mediator should be responsible for finding
the mapping between the data of the pair of services involved and then run the respective data
transformation.

 At runtime, the workflow of a BPaaS has to be adapted through the substitution of one service (B) with
another one (B1). If the output of the previous service in execution (A) is not compatible with the new
service (B1), then there is a need for data transformation. As such, the respective API method of the
Process Data Mediator could be exploited which could inspect the (possibly ontology-based) definitions
of the services involved (A and B1) in order to produce the mapping and then use it to perform the
respective transformation. Then, as the workflow execution has been suspended, the workflow will be
resumed with the execution of the new service (B1) which has now the appropriate input.

Based on the above analysis, we can identify the three main modes of usage for the Process Data Mediator: (a)

at runtime to realize a particular data transformation task already specified in a BPaaS workflow; (b) at runtime to

realize a data transformation functionality required between two services with incompatible data in a certain

BPaaS workflow in an actually indirect manner (as no data transformation is prescribed directly in the workflow

but there is only an annotation dictating it); (c) at runtime to check and adapt the data of a previously executed

service with those needed by a new service which substitutes the one that was next in the execution order.

 Task:
o Map output data of one component/service to the input data of another component/service;
o Perform the respective transformation based on the mapping specification/result

 Main interfaces:
o Input: data schema for a service/component or ontology annotation, specification of the

mapping in a specific language (optionally transformation logic/specification)
o Output: transformed data to be used as input to the next service in execution order

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 128 of 184

7.3.2.7 Component Diagram

Figure 59 BPaaS Execution Environment – Component Diagram

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 129 of 184

7.3.2.8 Roles

Figure 60 BPaaS Execution Environment – Actors

The following actors and roles will be involved in the BPaaS Execution Environment:

 CloudSocket Operator for hosting the CloudSocket instance

 CloudSocket Broker for managing BPaaS bundles as well as their own Marketplace (offered as service

by the CloudSocket Operator).

 The CloudSocket Customer which needs to exploit a certain BPaaS. There are different roles that could

be undertaken by different users of this actor. Each role covers different phases of the life-cycle

management of the BPaaS, and the skills are different such as business, technical and operative,

nevertheless every role can be cover by the same actor.

One type of CloudSocket Customer role will be the Business Engineers (business skills), which are

responsible of assessing business requirements and costs in order to find and purchase the different

BPaaS bundles at the Marketplace. The Process Responsible (technical skills) will deal with the

execution and management of the business process instances in order to follow up the status of the

purchased BPaaS

Another type of BPaaS Customer role will be the Knowledge Worker, which is responsible to manage the

manual tasks of the workflows mapping to the BPaaS bundles purchased.

 The Cloud Providers offering different services at different levels (i.e., IaaS, PaaS, SaaS) enabling the

creation of virtual machines to host software components as well as the direct SaaS call to realize a

certain functionality, which may be required for the BPaaS.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 130 of 184

7.3.3 Data Interface

The Execution Environment exposes three main interfaces with the rest of the environments to manage the

deployments and the SLA, besides exposing the monitored information. The following data is used to interact

between the different environments.

Figure 61 BPaaS Execution Environment – Interfaces

7.3.3.1 Interface to Deploy the BPaaS Bundles.

The Marketplace uses this interface to send the BPaaS bundle for deployment, which contains all the details to

configure the BPaaS environment. Such data include the details of rules, adaptations, cloud providers, the

software component, atomic services, the business process definition and the executable workflow. We can

consider some standards to cover the different parts of the interchangeable data.

 Adaptation workflows/strategies: BPMN could be exploited

 Adaptation history: mapping of workflow instances to certain adaptation workflows that were executed

for them, respective adaptation rules and reasons for adaptation - here the own format/language is

deployed (e.g., defining mappings through IDs to respective information stored elsewhere)

 Adaptation rules in form of SRL (SRL 2015) as part of CAMEL (CAMEL 2015) will be used with

extension to be able to specify adaptation strategies and contextual conditions: the form is the following:

rule: event_pattern -> adaptation plan/workflow/strategy

where rule can have an ID as well as an organisation/user owning it as well as other meta-data (e.g.,

date of creation). An event pattern maps to a combination of events through the use of logical or time

operators, similarly to other event pattern description languages. We can have a pointer to the

adaptation strategy/workflow/plan which is formally described by BPMN. If we desire not to use BPMN

as adaptation plans can be quite simplistic and only sequence-based, then action specification

constructs in SRL can be exploited along with some possible extensions to cover different types of

adaptation actions (not only scaling but fail-over and other actions on higher-levels).

 User/Organisation information: Pointers to users and organisation information to be drawn through the

SCIM (SCIM 2015) protocol/standard from the Marketplace.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 131 of 184

 Workflows are specified in BPMN.

 Data mappings: need to check the format/language to be used for their specification. There can be

different languages depending on the task that has to be performed (e.g., map ontology concepts, XML

document elements, etc.). Potential candidates are RML (RDF Mapping Language) (RML 2015), R2R

(R2R 2015) and CIDOC (CIDOC 2015) mapping language. The latter has already been used for

generating particular mappers which have been used in data integration tasks.

 Deployment plans CAMEL (CAMEL 2015) deployment meta-model (CloudML 2014) with the extensions

for PaaS and SaaS modelling.3

The BPaaS Bundle of Sending Christmas Greeting Cards can be seen in the Annex.

7.3.3.2 Interface to Manage Service Level Agreements

Two potential approaches are foreseen to define the SLA specification language: a) to enrich WS-Agreement

(WS-Agreement 2011) by using/referencing quality terms, such as quality metrics, defined in OWL-Q (OWL-Q

2015); b) extend OWL-Q to be able to specify SLAs.

The SLA Engine is based on the first approach relying on WS-Agreement specification (WS-Agreement 2011)

and OWL-Q (which will be extended), so an agreement specification will be defined using the WS-Agreement

schema (WS-Agreement 2009) and it will refer to metrics and other quality terms defined in OWL-Q (OWL-Q

2015) to complete the specification of SLOs. The main parts of the WS-Agreement schema are the following:

Figure 62 SLA Interface

A simple example of the agreement description, following this WS-agreement schema can be seen in the Annex.

7.3.3.3 Interface to publish the monitored information.

This interface semantically describes and aggregates the measures from the BPaaS Execution Environment to

be further abstracted towards domain specific business process level in the BPaaS Evaluation Environment.

In OWL-Q (OWL-Q), there is a concept representing a measurement which is related to the measured value, the

timestamp indicated when it was generated and to the respective metric measured. Metrics are defined in turn via

respective concepts in OWL-Q in a semantically rich way. To this end, any kind of aggregated measurement

which could exposed to different components via the publish/subscribe or the REST interface of the Monitoring

Engine will be mapped to the description of instances of this measurement concept.

7.3.4 Research Prototypes

While it has been clearly shown that some research prototypes with respect to BPaaS monitoring and re-

configuration have already been adopted by the current implementation, it is advocated that a more sophisticated

3 See D3.3 BPaas Allocation and Execution Environment Blueprints, chapter 2.2

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 132 of 184

approach should be followed in the future which attempts to perform both types of activities in a cross-layer

manner by taking into account the dependencies between the different layers as well as the possibilities of

performing a series of adaptation actions, even in the context of a certain problematic situation, which span

different layers. To this end, in the context of Deliverable D3.3 “BPaaS Allocation and Execution Environment

Blueprints”, particular extensions to the BPaaS monitoring and adaptation research prototypes have been

analysed which could be undertaken by the implementation once they are realised in full.

Concerning BPaaS monitoring, the respective prototype/blueprint is analysed in D3.3 (D3.3 2016,section 4.2.5).

To summarize, the respective extensions concern the following: (a) incorporating layer-specific monitoring

mechanisms/tools; (b) appropriately connecting adjacent-layer monitoring tools via a publish-subscribe

mechanism in order to enable the propagation of measurements from lower to higher layers and thus be able to

cover the missing gaps; (c) taking into account a hierarchical cross-layer metric model which indicates how such

a propagation of measurements within the same and across layers can be performed.

Concerning BPaaS adaptation, the respective prototype/blueprint is analysed in D3.3 (D3.3 2016, section 4.3.4).

The following extensions to the current prototype adopted are envisaged: (a) employing layer-specific services

which implement the respective actions needed in each layer; (b) executing in a controlled and synchronized

manner adaptation workflows, which include adaptation actions as service tasks in different layers, via a

Workflow Engine; (c) capturing and processing of sophisticated adaptation rules which include combining via

logical and temporal operators single metric events such that complex adaptation circumstances crossing

different layers are properly detected; (d) feeding-up from the BPaaS Evaluation Environment of new adaptation

rules in a semi-automatic manner in order to improve the adaptation behaviour of the BPaaS.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 133 of 184

8 BPAAS MARKETPLACE

8.1 Introduction

The foreseen Cloud Marketplace is based on the YMENS cloud marketplace, which is an online storefront

through which customers may subscribe to and access native cloud applications provided by Ymens or other

independent software vendors (ISVs). The Marketplace and its underlying components act as a Cloud Service

Brokerage (CSB) platform acting as an intermediary between cloud providers and cloud consumer and assisting

companies in choosing the services and offerings that best suits their needs.

The Marketplace, in the context of CloudSocket, has been selected as a dedicated environment to facilitate

customer and provider on boarding, from customer ordering and procurement of BPaaS to provider registration of

its atomic cloud services.

Its role is to link the BPaaS Allocation to the Execution Environment, giving the client the opportunity to buy and

configure the BPaaS bundles received from the Allocation and to send the configured bundles to the Execution

Environment for provisioning.

This Marketplace, in the context of CloudSocket, provides the following high-level features:

 BPaaS & SaaS Product Catalog

 Decision Support System for BPaaS procurement

 Customer & User Registration & On-boarding

 Identity Provisioning & Identity Lifecycle Management

 Cloud Service Provider registration of atomic cloud services

 Registry Services

 Authorization (at service level) & Authentication (at user level)

In order to support the aforementioned functionalities, the BPaaS Marketplace comprises two main components.

These components are the following:

 Marketplace (yCONNECT) allows the customers to discover, analyse and purchase a BPaaS bundle in

the cloud environment. Thereforem, this is the actual Marketplace which enables the customers to

browse, analyze and buy the BPaaS bundles.

 Repository Manager is responsible for managing the information related to different entities, such

external services, software components, cloud providers and so on. It is a transversal component, with

respect to the rest of the Environments, allowing the population, browsing and searching of this

information using standard web technologies.

The following major building blocks fulfil the functional capabilities of the Marketplace Environment:

i. Customer UI Layer: Frontend Portal used by Business User to purchase and administer services.

ii. Product Management Layer: Product Information System that manages product marketing data.

iii. Identity Management System: Provides identity federation, provisioning, authentication and

authorization.

iv. Service Orchestration Layer: Manages service provisioning, ordering and billing.

v. Cloud Provider Hub: Gateway for registering and consuming atomic cloud services.

vi. Service Repository Manager: Set of registries for cloud services and software components.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 134 of 184

8.2 Functional Capabilities

The Marketplace is a software system used in production that already serves multiple customers and, as such,

has objectives beyond the scope of CloudSocket. As a CloudSocket environment, the Marketplace will support its

existing functionalities and will be extended to support additional scenarios for the CloudSocket objectives in

BPaaS procurement.

The following scenarios were identified as part of the CloudSocket context. These scenarios are depicted using

the UML nomenclature:

- Publish a BPaaS Bundle to Product Catalog

- Purchase a BPaaS Bundle

- Register New Customer and Users

- On-board Atomic Service Provides

8.2.1 Publish BPaaS Bundle to Product Catalogue

Use Case ID MP UC2 - Publish BPaaS Bundle to Product Catalogue

Title &

Description

A CloudSocket Broker publishes a BPaaS Bundle in the Marketplace Product Catalog.

The Broker publishes a completed and hence final BPaaS Bundle in the Marketplace

Product Catalog so that CloudSocket Customer can purchase, deploy and use it.

Actors CloudSocket Broker

Use Case

Objective

To publish a BPaaS Bundle into the Marketplace and enable CloudSocket Customer to

buy it.

Pre-Conditions The Bundle exists in the Bundle Repository, and it is in the Complete state.

Process Dialog 1. The Broker selects a BPaaS Bundle.

2. The Broker issues the command to publish the BPaaS Bundle in the

Marketplace Product Catalog.

3. The BPaaS Allocation Environment invokes the Product API exposed by the

Product Management Layer.

4. The Broker browses the bundles using the Catalog Management UI.

5. The Broker selects the published bundle and edits it description

Variations 5.a) The published Bundle is not found. The publish command is repeated.

Post-Conditions The BPaaS Bundle is published in the Marketplace Product Catalog and the Business

Process Users can find and buy it using the Marketplace.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 135 of 184

Diagrams

Figure 63 Use Case Diagram – MP UC2 - Publish BPaaS Bundle to Product Catalogue

Figure 64 Sequence Diagram – MP UC2 – Publish BPaaS Bundle to Product Catalogue

Table 22 BPaaS Marketplace – Use Case 1 – Publish BPaaS Bundle to Product Catalogue

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 136 of 184

8.2.2 Purchase BPaaS Bundle

Use Case ID MP-UC2-Purchase BPaaS Bundle

Description

The CloudSocket Customer browses the Product Catalog for Business Processes that fulfill his/
her needs. He/she performs searches based on business criteria and is presented with BPaaS
Bundles that match these criteria.

After selecting a bundle, the user is presented with a guided decision wizard in which the user
can further choose the most appropriate BPaaS Bundle.

Making the final selection, triggers the ordering flow. Depending if the cusomter is a new or
returning, the client has the chance to provision the organization he belongs to, the account and
other organization user, and to add the billing & payment details.

Upon final confirmation of the order, the Marketplace sends the deployment request to the
BPaaS Execution Environment.

Actors CloudSocket Customer and CloudSocket Broker

Use Case
Objective

Select & Oder the most appropriate BPaaS Bundle in the environment.

Pre-
Conditions

All accounts and agreements with third parties (for atomic services) and Cloud Providers (for
cloud capabilities) have been previously generated and achieved, respectively.

BPaaS Bundles have been defined in the BPaaS Design Environment and published to the
Marketplace’s Product Catalog.

Process
Dialog

1. The CloudSocket Customer browses BPaaS bundles in the Marketplace.

2. The Marketplace presents to the user a decision wizard to enable choices based on

business criteria.

3. The CloudSocket Customer selects the preferred BPaaS bundle according to domain

specific business process properties.

4. The Marketplace collects identity information from the CloudSocket Customer and

creates a new organization and account:

a. Inside the Identity Management System

b. With the Atomic Cloud Services associated with the BPaaS Bundle

5. The Marketplace manages or validates all the preconditions of the BPaaS.

6. If the preconditions are fulfilled, the Marketplace triggers the deployment via an Web

Service call inside the BPaaS Execution Environment

7. The BPaaS bundle is deployed and available for the Business User.

Variations

If something happens along the ordering process:

 The environment rolls back all the previous steps and settles all billing transactions.

 The CloudSocket Broker can analyze the problem in order to resolve it and notify it to the

Business Process User.

During the ordering process, the different actors can see the status of the service orders so they
can react on them:

 The CloudSocket Customer can track the order fulfilment status and be notified upon

completion.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 137 of 184

 The CloudSocket Broker can see the history and status of all orders placed.

Post-
Conditions

The BPaaS bundle deployment request is received by the execution environment.

Diagrams

Figure 65 Use Case Diagram – MP-UC2-Purchase BPaaS Bundle

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 138 of 184

Figure 66 Sequence Diagram – MP-UC2-Purchase BPaaS Bundle

Table 23 BPaaS Marketplace – Use Case 2 - Purchase BPaaS Bundle

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 139 of 184

8.2.3 Register New Customer User

Use Case ID MP-UC3-Register New Customer User

Description
The user, belonging to a CloudSocket Customer organisation, wants to create an organisational
account in the Marketplace and register the organization’s end-users so that he can order
BPaaS bundles without the need for further registration.

Actors CloudSocket Customer and CloudSocket Broker

Use Case
Objective

Create organisation and user identity information

Pre-
Conditions

N/A

Process
Dialog

1. The CloudSocket Customer user accesses the Marketplace and clicks on register.

2. The user submits the identity data pertaining to the organization and the administrative

account

3. The Customer Portal inside the Marketplace send the data to the Provisioning Service

4. The Provisioning Service orchestrates the data submission

a. to the Marketplace Identity Server and

b. if necessary to the Atomic Cloud Services

5. In case of success, an organizational account is created and the CloudSocket

Customer User can add multiple end-user accounts

6. The end-user accounts are created through the same procedure via the Provisioning

Services

The accounts are created and confirmation emails are sent to the users.

Variations

If something happens along the identity registration process:

 The environment rolls back all the previous steps and organisation/user accounts are

marked for deletion.

After the registration process, the different actors can see the status of organization and its
users:

 The CloudSocket Customer user can add/delete/update user accounts.

 The CloudSocket Broker can add/delete/update user accounts and organizations.

Post-
Conditions

A confirmation email is received by the Business User and.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 140 of 184

Diagrams

Figure 67 Use Case Diagram – MP-UC3-Register New Customer User

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 141 of 184

Figure 68 Sequence Diagram – MP-UC3-Register New Customer User

Table 24 BPaaS Marketplace – Use Case 3 - Register New Customer User

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 142 of 184

8.2.4 Onboard Cloud Service Provider

Use Case ID MP-UC-4-Onboard Cloud Service Provider

Description

The Independent Software Vendor, providing an atomic cloud service, wants to publish its
service in the Marketplace.

Actors Service Provider

Use Case
Objective

Register atomic cloud service and publish in Product Catalogue.

Pre-
Conditions

A commercial agreement is reached between the CloudSocket Broker and the Service Provider.

Process
Dialog

1. The Service Provider accesses the Cloud Service Hub and clicks on register.

2. The Service Provider submits service metadata: urls, service description, prices, …,

3. The registry metadata is submitted to the Service Registry

4. The product metadata is submitted to the Product Management System

5. The Service Provider tests its service for compliance. If:

a. Success: The Product and Service are marked as active

b. Fail: The Service Provider is notified and can update the data

The Service is registered and marked as active.

Variations

If something happens along the registration process:

 The environment rolls back all the previous steps and service metadata is marked for

deletion

After the registration process, the different actors can see the status of organization and its
users:

 The Service Provider can update the service and product metadata.

 The CloudSocket Broker update/delete the service and product metadata.

Post-
Conditions

The registered service is tested successfully for compliance

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 143 of 184

Diagrams

Figure 69 Use Case Diagram – MP-UC-4-Onboard Cloud Service Provider

Figure 70 Sequence Diagram – MP-UC-4-Onboard Cloud Service Provider

Table 25 BPaaS Marketplace – Use Case 4 – Onboard Cloud Service Provider

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 144 of 184

8.3 Components

The Marketplace architecture supports multitier topologies in order to decouple the user interface and the

business logic core. Nevertheless it is responsibility of every component to apply more tiers or patterns to create

a loosely coupled design. The following sections the major components in the Marketplace and the interaction

with the other BPaaS Environments.

8.3.1 Customer UI Layer

8.3.1.1 Marketplace

This frontend allows the users to browse, order, provision, and manage their resources. This Portal is the user’s

single pane of glass to remotely browse a storefront catalogue of cloud services and provision desired services. It

has a catalogue of cloud services that users can browse (storefront), an e-commerce Shopping Cart integrated

with PayPal and other Payment Gateways and an account registration module to support new customer

onboarding.

Decision Wizard: Part of the Marketplace, the Decision Engine helps users automatically find the appropriate

BPaaS bundle for their needs from among an extensive offer. Is will be a wizard like interface to enable service

selection based on location, compliance, cost, SLAs and other domain specific business process criteria.

Figure 71 - Marketplace web page.

8.3.1.2 Customer Portal

The Customer Portal provides a single point of entry for CloudSocket Customer to login and manage system

accounts, resources, access control and purchased cloud services (through the User Management UI). End-

users are able to access their entitled services in a seamless manner, with web SSO, via the Cloud Portal and

received feedback and statistics about service usage via the pre-configured Dashboard(s).

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 145 of 184

Figure 72 Marketplace – Customer Portal – User Interface Mockup

8.3.2 Cloud Broker Engine

The Cloud Broker Engine provides the core cloud automation capabilities and a business rules management. It

ensures catalogue management, order orchestration, service provisioning and identity synchronization in an

authorized manner.

Product Management Layer: The Product Information System manages product-marketing data. It is the core

sales component that transforms a set of cloud services into products and bundles, with prices, discount and

promotions, with sales description, product sheet and variants.

Decision Support System: Customized rule engine that supports the service selection process, with customer

defined criteria that are linked to business requirements like cost, location, data protection level, etc.. The criteria

and the decision matrix are extendable and customizable.

Service Orchestration Layer: The orchestrator supports managing service provisioning, ordering and billing and

assures the fulfilment of cloud services provision.

8.3.3 Identity Management System

Identity Manager is the authentication component responsible for verifying the identity of a principal requesting

authorization, as well as group membership inquiries. It ensures interoperability and Cross-Domain SSO by

relying on standards such as SAML (SAML 2015), OpenID Connect (OIDC 2015) and SCIM (SCIM 2015). It

ensures identity propagation and just-in-time provisioning. The Access Manager is responsible for authorization

and access policy management, which serves as the basis for the decisions of the Policy Manager that either

grants or denies the requests for capabilities.

The Identity Management System (IdM) will provide authentication services for all the components of the Cloud

Socket platform. This means it will store the following types of user accounts:

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 146 of 184

1. User accounts for securing the integration between different components of the platform (Design,

Allocation, MarketPlace, Execution)

2. User accounts for administrative tasks for each component of the platform (monitoring, administrative UI,

and so on)

3. User accounts belonging to Cloud Brokers, Cloud Providers, Cloud Consumers (Customers) in order to

use the platform

The Identity Management System will include an API, available to the other components of the Cloud Socket

platform, for user/roles provisioning.

The standard deployment of Identity Management System will include the following default roles:

o Design Environment

 design.broker.admin – has access to administrative functions of Design Environment

from the Broker perspective for example to send BPaaS to Allocation Environment)

 design.admin – has access to administrative functions of Design Environment

o Allocation Environment

 alloc. broker.admin - has access to administrative functions of Design Environment

from the Broker perspective for example to send BPaaS to Marketplace Environment)

 alloc.admin - has access to administrative functions of Design Environment

o Marketplace Environment

 mkp.customer.admin – has access to administrative functions of Marketplace – acting

as customer procurement

 mkp.provider.admin – has access to administrative functions of Marketplace – acting

as provider service manager

 mkp.broker.admin – has access to administrative functions of Marketplace – acting as

broker of a specific BPaaS

 mkp.admin – has to administrative functions of Marketplace like: user management for

brokers and providers, authorization for customer_admins, manage the special offers

and so on

o Execution Environment

 exec.customer.admin – has access to users management for the bought BPaaS

 exec.provider.admin – has access to the service usage dashboards

 exec.admin – manage the access for the Execution Environment Components

 exec.customer.user – belongs to the customer and interacts with the execution of the

BPaaS bundles.

o Evaluation Environment

 eval.broker.admin – has access to administrative functions of Evaluation Environment

from the Broker perspective

 eval.admin – has access to administrative functions of Evaluation Environment

Besides the default roles, each environment might manage through API the IdM in order to provision additional

needed roles specific for their environments. For example, the specific user roles required by the execution of

workflow should be deployed in IdM along with the BPaaS bundle deployment (exec.bpass_id.role1). In this

context the mapping of users with specific BPaaS bundle roles will be managed by Workflow component of

Execution Environment through IdM API.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 147 of 184

The supported functionalities of the Identify Management System are as follows:

 Identity Management (IM)

o General Identity Management

o Federated Identity Management (FIM)

 Authentication

o General Authentication

o Single Sign-On (SSO)

 Authorization

o Account and Attribute Management

o Account and Attribute Provisioning

Supported use cases include:

Table 26 Identify Management Use Cases

Title Description

Identity Provisioning
Feature the need support and manage customer policies for identity decommissioning
including transitioning of affected resources to new identities.

Identity Configuration
Feature the need for portable standards to configure identities in cloud applications and
infrastructure (virtual machines, servers etc.).

Organization/Customer
Administration

Feature the ability for enterprises to securely manage their use of the cloud provider’s
services (whether IaaS, PaaS or SaaS), and further meet their compliance requirements.
Administrator users are authenticated at the appropriate assurance level.

Access to Enterprise Cloud
Hosted Applications

Exhibit the need for seamless authentication and access privileges conveyance from an
enterprise that is wishes to host their workforce applications on a public cloud.

Cloud Identity Management,
SSO and Authentication

A user (or cloud consumer) is able to access multiple SaaS applications using a single
identity.

Federated User Provisioning
and Management

Show the need for provisioning, administration and governance of user identities and their
attributes for organizations that have a distributed structure which includes many central,
branch offices and business partners where each may utilize cloud deployment models.

Federated SSO and Attribute
Sharing

Feature the need for Federated Single Sign-On (F-SSO) across multiple cloud
environments

Enterprise to Cloud SSO

A user is able to access resource within their enterprise environment or within a cloud
deployment using a single identity. Users expect and need to have their enterprise identity
extend to the cloud and used to obtain different services from different providers. By
accessing services via a federated enterprise identity, not only the user experience of SSO
is to gain, but also Enterprise compliance and for control of user access

Offload Identity Management
to External Business Entity

Show the need for federated identity management which enables an enterprise to make
available cloud-hosted applications to either the employees of its customers & partners or
its own institutional consumers and avoid directly managing identities for those users

Per Customer Identity
Provider Configuration

Show the need for cloud tenants to securely manage cloud services using automated tools
rather than navigating and manually configuring each service individually

Delegated Identity Provider
Configuration

Show the need for cloud tenant administrators need to delegate access to their identity
services configuration within a multi-tenant cloud service to their chosen IdP service

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 148 of 184

8.3.4 Cloud Provider Hub

This component represents the gateway for registering and consuming atomic cloud services. The integration of

new Service Providers provides the following functionalities:

 Provisioning new instances of the service / application: purchase, modification or cancellation.

 Provisioning users who can make use of the application / service.

 Validation of user credentials in order to use application / service contracted.

Provider Management UI: The aim of this portal is to enforce the integration of every Service Provider to

become a part of the Marketplace. It manages Service Provider integration and lifecycle.

Cloud Service Gateway: It enables atomic cloud services routing proxy and adaption layer that supports

provisioning and SSO.

8.3.5 Repository Manager

This component offers access to the repositories and therefore to the meta-data of the services. Different options

to manage the access are considered to the different registries (a) someone may indicate the repository/registry

apart from the query itself and then let the Repository Manager to perform the respective call and return back the

result from the registry, (b) an API is provided by the Repository Manager for each repository/registry - in this

case, there is a need of calling the API methods of the corresponding registry with the respective query needed

and, (c) direct access to repositories - in this case, the endpoint of the repositories has to be known in order to be

able to execute a particular query.

Based on the following requirements, we consider the two first options in order to be more modular and flexible:

a) there is a need for a component to manage these repositories;

b) the access API can be uniform to hide specifies of the technologies used to realize these

repositories - otherwise, different forms of queries will need to be run for different repositories in

possibly different query languages which might be overwhelming for components which need to

interact with more than one registry in the end;

c) this is needed for accounting reasons - otherwise, there should be a sophisticated mechanism

which detects who is performing which query on what repository in order to proceed with the

respective charge or to check if the access is allowed due to non-payment reasons (component

owner did not pay this month to access the repository service).

Hence the Repository Manager is characterised by:

 Tasks: Handles access to the repositories;

 Main Interfaces:

o Input: Endpoint of repositories (data to be collected) and credentials

o Output: Information retrieved through calling the respective access method of the Repository

Manager API.

The following three registries are part of the Repository Manager.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 149 of 184

8.3.5.1 Atomic Service Registry

The Atomic Service Registry describes the cloud services that a Service Provider offers. There are three

essential components to the Service Catalogue:

 The data model (in a self-describing JSON format) holding the information for the Service Catalogue to

describe standard and extended attributes of Service Providers and service offerings.

 The standard set of structures to describe the Service Provider and Service Provider’s products and

services.

 The API to interact with the Service Catalogue.

The different workflows use them to be part of the service tasks in the business process definition. Hence, these
descriptions have to include both functional descriptions, as business details and technical specification (as the
interface description). Besides, this is required certainly in case of adaptation reasons, as we might need to
substitute one service with another one. Additionally, it can also be used to draw additional information about a
particular service, which could then facilitate its (adaptive) execution.

8.3.5.2 Software Component Registry

This is required in the context of a BPaaS realization, deployment and adaptation as we need to know how to

obtain a software component and deploy/run it in a particular VM. Such information can be drawn on demand

(based on the component identifier and other references in the BPaaS bundle) when the respective task

(deployment/adaptation) has to be performed. As in the case of the atomic service, the business process needs

to know details about the functional descriptions, the business details and the technical specifications (as the

interface description) in order to include and use them in the design of the BPaaS.

8.3.5.3 Cloud Provider Registry

This component will be responsible to store and describe the different cloud provider configuration (local or

remotes) as the login, front-end, the definition of the APIs. This registry is not just a simple configuration

description, it is also related with the complete management information; only the cloud providers included in the

registry will be able to be used in the BPaaS bundle. This information will be use in the execution and the

allocation phase.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 150 of 184

8.3.5.4 Component Diagram

Figure 73 BPaaS Marketplace Components

Figure 74 BPaaS Marketplace Component Interaction

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 151 of 184

Deploy Diagram

Figure 75 - Deploy diagram of the Marketplace

8.4 Roles

The main CloudSocket roles that interact with the Marketplace are:

i. CloudSocket Operator who is for providing and maintaining the environment to manage BPaaSs

ii. CloudSocket Broker who is responsible for designing and publishing BPaaS bundles in the

CloudSocket

iii. CloudSocket Customer, a user of an end-user organisation which is assigned with the task to find,

purchase and manage the different BPaaS bundles to be used by his organisation

iv. Service Provider who wants to make its atomic cloud services available in the Marketplace and

orchestratable via BPaaS.

8.5 Data Interface

The interfaces supported by the Marketplace environment are REST based interfaces, working over http, derived

from the SCIM protocol and extend to support additional functionalities. They support both JSON and XML data

format and are extensible so that enrichment with metadata information is enabled for every operation. These are

as follows:

 Identity API: SCIM extension that deals with user identity provisioning and management

 Auth API: OpenID Connect 1.0 single sign-on implementation (REST, HTTP based)

 Product API: SCIM inspired REST protocol that extends the concept of Resource to Product and manages

product lifecycle

 Registry API: SCIM inspired REST protocol that extends the concept of Resource to Service and deals with

Atomic Cloud Service registration and management

 Cloud API: set of REST APIs that support identity provisioning (SCIM inspired), SSO and service adaption

for external cloud services

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 152 of 184

9 EVALUATION ENVIRONMENT

9.1 Introduction

The BPaaS Evaluation Environment has the main aim to perform an analysis over the information produced

during the execution phase of the BPaaS lifecycle in order to discover bottlenecks as well as optimisation points.

Such information can then be exploited in a next cycle by the BPaaS Design and Allocation Environments in

order to optimize the BPaaS such that it is able to exhibit a particular service level as well as improve the

business benefits of the CloudSocket Broker offering it.

In order to support such evaluation, the BPaaS Evaluation Environment follows, similarly to the previous

environments, a multi-layer architecture which comprises three main layers: (a) the UI layer which visualizes the

results of the analysis; (b) the business logic layer which offers the analysis functionality to the layer above, the UI

one; (c) the data layer which provides all information that is required in order to support the analysis.

In each layer, different components have been put in place. At the UI layer, we have the Hybrid Business Process

Dashboard which visualises KPI evaluations as well as other findings from the analysis, such as business

process bottlenecks. At the business logic layer, there is: (a) the Hybrid Business Process Management Tool

which is responsible for the evaluation of KPIs; (b) the Conceptual Analytics Engine which is responsible for

performing analysis over the underlying data in order to assist in the evaluation of the KPIs as well as provide

useful design and allocation suggestions in the form of best deployments and adaptation patterns & rules; (c) the

Business Process Miner which mines the execution history of the business process of the BPaaS in order to

discover bottlenecks as well as discrepancies between what has been designed and what has been in place

during production.

One main actor is involved in the Evaluation Environment and this is the CloudSocket Broker. Two main roles are

foreseen in the broker's organisation to participate in the BPaaS evaluation phase, which maps to a business and

a technical role. The business role is responsible for the evaluation at the domain specific business process level

while the technical role is responsible for the evaluation at the workflow level. The cooperation between the roles

is supported by the BPaaS Evaluation Environment as it enables the smooth switch between business and

workflow levels in a controlled way. It has to be noted that the results of the BPaaS Evaluation Environment can

be exploited by the same roles during the design and allocation phase of the BPaaS. In this sense, the

CloudSocket will support the alternation between the different environments in order to enable the rapid

optimisation of the BPaaS based on the findings of the evaluation phase. This means that the evaluation results

could be directly exploited by the tools of the BPaaS Design Environment in order to load the respective artefacts

and immediately apply on them in the BPaaS Allocation Environement the provided optimisation suggestions,

once of course the respective roles agree on them.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 153 of 184

9.2 Functional Capabilities

The following main functional capabilities are envisaged to be exposed by the BPaaS Evaluation Environment:

 Aggregation and decomposition from technical logs to domain specific business KPIs.

 Conceptual Analytics providing results which enable root cause analysis, drill down of business

indicators and propagation of technical indicators

 Discovery of best deployments for BPaaSs

 Derivation of adaptation rules or event patterns leading to critical events, such as violation of KPIs and

SLOs. The latter can be transformed into adaptation rules to support pro-active BPaaS adaptation in a

semi-automatic manner.

 Process mining analysis to support the discovery of bottlenecks and places for improvement inside

business processes and corresponding workflows.

To support and highlight the benefits of the aforementioned main functionality, we have the following visualisation

and data building functionalities:

 Bottom up mapping of process, service and monitoring logs with semantic descriptions

 Presentation of a monitoring dashboard that enables a management overview of the business processes

that run in the cloud.

This high-level functionality is manifested through the following scenarios which are captured by use case

description in conjunction with certain types of UML diagrams.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 154 of 184

9.2.1 KPI Analysis & Visualisation

Use Case id EvE-UC-1-KPI Analysis and Visualisation

Title &

Description

While the BPaaS execution phase focuses on the adaptive provisioning of a BPaaS, the

aim of the evaluation phase is to discover those optimisation points which will enable to

optimise a BPaaS in order to better fulfil the business and technical requirements posed to it

as well as decrease costs and increase the business assets of the Cloud Socket Broker.

One form of optimisation checking is through the use of KPIs which span the business and

technical/workflow level. Such KPIs indicate how well a BPaaS behaves according to

particular functional and quality aspects. In this respect, their evaluation can show whether

the BPaaS behaviour is suitable or has to be modified in order to better support the

requirements posed to it.

To support the KPI evaluation, the BPaaS Evaluation Environment collects information from

the BPaaS Execution Environment spanning process, service and monitoring logs and links

it together in a semantic manner, building in this way a semantic repository. This semantic

repository can then be exploited in order to derive new knowledge and pose queries on it

which could lead to the evaluation of KPIs.

The main actor in the BPaaS Evaluation Environment is the CloudSocket Broker, who

would exploit the Hybrid Business Dashboard in order to select a BPaaS and its respective

business process. Once this is done, then the dashboard should, by performing particular

queries over the semantic repository, present to the broker the high-level business KPIs in

different colours indicating which KPIs are met and which have been violated. The

CloudSocket Broker then can select a violated business KPI, see how much it has been

violated and request a drill-down into more related technical KPIs which will then be

visualised, in the same manner, by the dashboard. In the background, a set of queries will

be performed over the semantic repository in order to draw the information of the technical

KPIs. Through this drill-down, the broker has the opportunity to discover what exactly the

root cause of a KPI violation is and then act upon it.

Actors CloudSocket Broker

Use Case

Objective

Top-down browsing of KPIs with semantic analysis and querying at the background

Pre-

Conditions

The BPaaS has been already purchased and be executed in the context of one or more

users. Otherwise, it is not meaningful to provide any evaluation result as the BPaaS would

not have been used.

The existence of a BPaaS Execution Environment which produces the appropriate

information that is used to build up the semantic repository. This environment should also

provide an API (REST-API) through which this information can be retrieved.

Business and technical KPIs have been specified for the BPaaS in the previous phases,

indicating what they represent and what are their main components (target value, metric

and evaluation period). Of course, there is the flexibility to describe the KPI in the context of

the BPaaS Evaluation Environment. In this case, the business and technical roles are

supported to complete the specification of KPIs and then they will be able to see the results

of the respective semantic analysis.

Process The broker selects a particular BPaaS/business processes from those offered. In

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 155 of 184

Dialog particular, he is able to see a list of business processes along with any indicative

visual element which shows whether there is a violation of one or more KPIs for each

business process. In this manner, he/she will be more supported as he/she can

select only to check interesting BPaaSs (e.g., having KPIs violated).

 The CloudSocket Broker is prompted or decides to complete the information of some

KPIs defined in the previous phases in order to be able to see assessment results

also for them.

 The CloudSocket Broker is able to see a high-level overview of the business process

with a set of business KPIs coupled with their current status (i.e., respected or

violated).

 The CloudSocket Broker can select a KPI and see how well it is satisfied or how

much it has been violated.

 The broker can drill-down from a business KPI to a set of technical KPIs from which

the business KPI is derived in order to enable him/her to understand what the root

cause of a business KPI violation is.

 For each KPI assessment requesting step, the Hybrid Business Dashboard perform

requests on the Conceptual Analytics Engine, which performs the necessary

computations for KPIs whose definitions have been completed during the current

user session and the appropriate queries in order to obtain the respective values of

KPIs already computed. This information is then sent back to the dashboard in order

to visualize it by a so-called “business process model assimilation” technique in order

to show the CloudSocket Broker the results within the business process model.

Variations If KPIs are already complete, then there is no need to complete their information.

This can be checked by processing all KPIs posed for a particular BPaaS

 KPI completion can be performed even after the overview for a BPaaS is graphically

represented. In this case, the KPI would be shown with an indication that it cannot be

evaluated. As such, the broker, if he/she desires to assess this KPI, will have to

complete its information.

Post-

Conditions

Measurements and respective evaluations for KPIs are produced. For some KPIs, there can

be a completion of their specification.

Diagrams

Figure 76 Use Case Diagram – EvE-UC-1-KPI Analysis and Visualisation

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 156 of 184

Figure 77 Sequence Diagram – EvE-UC-1-KPI Analysis and Visualisation

Table 27 BPaaS Evaluation Environment – Use Case 1 - KPI Analysis and Visualisation

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 157 of 184

9.2.2 Derivation & Visualisation of Best Deployments and Adaptation

Patterns/Rules

Use Case id EvE-UC-2-Derivation & Visualisation of Best Deployments and Adaptation

Patterns/Rules

Title &

Description

The goal of this use case is to enable the generation of particular knowledge in the form of

best deployments and adaptation rules for BPaaS which can be used as suggestions for

improvement in the BPaaS Design and Allocation Environments. Such knowledge can only

be produced if the respective data are available in the semantic repository. Such data

include process, service and monitoring logs through which we can for instance know for

which process structure and respective deployment, we have the best possible performance

for a set of KPIs.

The CloudSocket Broker can exploit best deployment hints during the allocation phase in

order to modify the deployment plan of a BPaaS based on the respective execution history

of this BPaaS or similar BPaaSs. Of course, such deployment hints are just suggestions -

the CloudSocket Broker should have the appropriate expertise in order to follow or modify

the respective hint such that it suits a certain BPaaS.

The CloudSocket Broker can also exploit adaptation patterns/rules in order to incorporate

them as they are in a BPaaS bundle or modify them based on his/her expertise. Depending

on the form of the adaptation suggestion, the respective modification effort could be

different. If deployment rules are suggested, then the broker can just inspect them and

make slight modifications. If event patterns leading to violation of KPIs/SLOs are suggested,

then the broker should be able to complete the remaining part of the adaptation rule

pertaining to the specification of an adaptation strategy.

The CloudSocket Broker will exploit the Hybrid Business Dashboard in order to select the

respective business process/BPaaS and perform an analysis on it. Then, he/she can see

the analysis results and export them in the appropriate form in order to exploit them in the

next cycle of the BPaaS.

Actors CloudSocket Broker

Use Case

Objective

Derivation & visualisation of deployment and adaptation suggestions

Pre-

Conditions

The BPaaS and/or similar BPaaSs have been already purchased and have been executed

in the context of one or more users. To obtain deployment suggestions, there is the need

that at least similar BPaaS have already been executed. To obtain adaptation suggestions,

there is the need that at least the BPaaS has been executed.

The existence of an BPaaS Execution Environment which produces the appropriate

information that is used to build up the semantic repository on which the analysis takes

place. This environment should also provide an API (REST-API) through which such

information can be retrieved.

Obviously, there should be some violations for KPIs/SLOs in order to be able to derive

adaptation event patterns or rules.

Similarly, for a BPaaS, there should obviously be not one but many deployments. If this

BPaaS is similar to other BPaaSs, then at least one deployment per similar BPaaS in order

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 158 of 184

to have a meaningful comparison which will lead to a suitable result is required.

As the best deployment analysis considers a set of KPIs, then obviously the KPIs of this set

should be fully specified.

Process

Dialog

 The CloudSocket Broker selects a particular business process/BPaaS from those

offered. He might select an interesting BPaaS which has critical or important KPIs.

 The CloudSocket Broker is prompted or decides to complete the information of some

KPIs defined in the previous phases in order to be able to perform the analysis over

the set of KPIs desired.

 The CloudSocket Broker selects to perform deployment or adaptation analysis:

o The user selection is forwarded in the form of a respective request to the

Conceptual Analytics Engine. This engine might have to first to adapt the

execution history of the BPaaS (and possibly also for similar BPaaSs) in

case that one or more KPIs have their specification completed during the

current user session. Then, it executes the respective analysis algorithm(s)

based on the user selection over the semantic repository which should have

been properly set up by drawing the appropriate information from the

Execution Environment.

 Depending on the CloudSocket Broker's choice, the dashboard shows the analysis

results.

 In case of adaptation analysis, the CloudSocket Broker can select incomplete rules in

the form of event patterns (leading to SLO/KPI violations) which can then be finalized

through the mapping of these patterns to specific adaptation actions or strategies. If

strategies are represented by BPMN workflows, then the broker should be presented

with a BPMN design tool to perform the adaptation workflow specification.

 The CloudSocket Broker selects some (automatically generated or manually

completed) analysis results and exports them in the suitable format for further

processing in the next cycle.

Variations If KPIs are already complete, then there is no need to complete their information.

This can be checked by processing all KPIs posed for a particular BPaaS

 We could by default perform all sorts of analysis without requiring from the broker to

select the one sort or the other.

 The option to complete adaptation rules can be communicated to the users working

with the BPaaS Allocation Environment.

Post-

Conditions

Adaptation and/or deployment suggestions are derived. They might also be exported in

case that the broker selects this option.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 159 of 184

Diagrams

Figure 78 Use Case Diagram – EvE-UC-2-Derivation & Visualisation of Best Deployments and
Adaptation Patterns/Rules

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 160 of 184

Figure 79 Sequence Diagram – EvE-UC-2-Derivation & Visualisation of Best Deployments and
Adaptation Patterns/Rules

Table 28 BPaaS Evaluation Environment – Use Case 2 – Derivation & Visualisation of Best Deployments and
Adaptation Patterns/Rules

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 161 of 184

9.2.3 Process Mining Analysis & Graphical Representation

Use Case id EvE-Uc-3-Process Mining Analysis & Graphical Representation

Title &

Description

The goal of this use case is to perform process mining over the workflow logs in order to

discover any kind of optimisation finding. Such findings can take the following form: (a)

process bottlenecks; (b) paths that are never followed; (c) new paths that were not initially

anticipated; (d) process discrepancies with respect to a path that has been designed and

the actual path that is followed during process execution. All these findings can then lead to

optimising the BPaaS on different levels. To this end, they can be used as a guide for the

next cycle of the BPaaS.

We envisage that the CloudSocket Broker selects a particular BPaaS, and then requests to

perform a process mining over its logs in order to find bottlenecks or discrepancies. The

mining results are then visualized in order to enable the broker to see what is going wrong

and what the main discrepancies are by using appropriate interaction elements in

conjunction to the normal ones that are used to graphically represent the BPaaS business

process. In the end, the CloudSocket broker can select to export the mining results in order

to exploit them in the next cycle.

Actors Cloud Socket Broker

Use Case

Objective

Perform process mining & visualise respective results

Pre-

Conditions

The BPaaS has been already purchased and be executed in the context of one or more

customers.

The existence of a BPaaS Execution Environment which produces the appropriate

information that is used to build up the semantic repository on which the mining takes place.

This information should at least comprise process and workflow log data. The BPaaS

Execution Environment should provide an API through which this information can be

retrieved.

Process

Dialog

 The CloudSocket Broker selects a particular BPaaS from those offered. Depending

on the context of the CloudSocket Broker, different characteristics of the BPaaS

business process may be of interest. The hybrid dashboard also presents meta

information of the business process, such as KPIs, human interaction and the like to

enable the CloudSocket Broker to take an informed decision of which BPaaS to

select for the analysis.

 The CloudSocket Broker demands to perform process mining on the selected BPaaS

o The user selection is forwarded in the form of a respective request to the

Process Mining Engine. This engine first collects the appropriate information

and stores it in the semantic repository. Then, it executes one or more state-

of-the-art process mining algorithms.

 The dashboard shows the analysis results over the so-called “assimilation”

technique, where information is “assimilated” into business process models.

 The CloudSocket Broker selects to export the process mining results to the suitable

format for further processing in the next cycle.

Variations The CloudSocket Broker might be able to choose the mining algorithms for the

analysis in order to focus on certain aspects.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 162 of 184

Post-

Conditions

Process mining results are produced and possibly exported

Diagrams

Figure 80 Use Case Diagram - EvE-Uc-3-Process Mining Analysis & Graphical Representation

Figure 81 Sequence Diagram - EvE-Uc-3-Process Mining Analysis & Graphical Representation

Table 29 BPaaS Evaluation Environment – Use Case 3 - Process Mining Analysis & Graphical Representation

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 163 of 184

9.3 Components

As already indicated, there are three layers involved in the architecture of the BPaaS Evaluation Environment. To

this end, we present the components involved in this architecture based on the layer in which they exist.

9.3.1 User Interface Layer

9.3.1.1 Hybrid Business Dashboard

There is currently only one component in the UI layer, namely the Hybrid Business Dashboard. This component is

responsible for enabling the user to select the appropriate analysis technique as well as visualize the respective

analysis results. Depending on the type of analysis, the user has also the ability to export the results in an

appropriate form. In addition, different visualisations and flows of interactions are involved.

In particular, when KPI analysis is involved, then the visualisation concentrates on depicting the assessment

results over high-level business KPIs. The user is then enabled to select an e.g. problematic business KPI and

inspect the assessment of technical KPIs from which the business KPI is derived. This form of top-down

interaction enables to perform a root cause analysis for problematic performance situations. As a side-effect of

having incomplete KPIs, the dashboard also enables the completion of the KPI specification in order to enable

assessment for it over the Semantic Repository.

In case of process mining, the dashboard enables the user to select a BPaaS and perform analysis over it. It then

graphically represents the mining results by “assimilating” analysis findings into the usual business process

model. The analysis results can also be exported as was the case of the adaptation & deployment analysis in

order to be exploited in the next cycle.

The dashboard consists of three major views:

(c) The Business Indicator view enables to see business and technical goals and KPIs represented

in different categories. Those goals and KPIs are represented as a business dashboard using

common representations like traffic lights to indicate if a KPI has been successfully reached or

violated. Different drill down mechanisms or search mechanisms enable to identify violating

business and technical (e.g., deployment, processing) indicators by supporting the

CloudSocket Broker in finding cause and effect relations.

(d) The Process Deployment/Adaptation Analysis view consists of tables showing improvement

potentials by listing the findings in a similar way like process analysis reports or process

simulation results are represented. Additional features to use those reports are provided such

as sort, search or the export in an appropriate format.

(e) The Process Mining view represents the original business process model, but “assimilates”

process log findings into the business process model to indicate process mining results within

the corresponding business process model.

The Hybrid Business Dashboard, depending on the type of analysis, has to invoke the respective component in

the business logic. This means that in case of KPI assessment and deployment/adaptation analysis, the

Conceptual Analytics Engine is to be involved, while in case of process mining, the Process Mining Engine needs

to be invoked.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 164 of 184

Figure 82 BPaaS Evaluation Environment - Business Dashboard User Interface Mockup

Figure 82 indicates a business dashboard, where KPIs are presented according their monitoring information.

9.3.2 Business Logic Layer

This layer comprises two components that perform different types of evaluation: (a) the Conceptual Analytics

Engine and (b) the Process Mining Engine which provide all the core analysis functionality of the BPaaS

Evaluation Environment. Both components exploit the REST API of the BPaaS Execution Environment in order to

retrieve and link information in a semantic manner into the Semantic Repository in the Data Layer. Such

information is then exploited in order to perform the respective analysis.

Additionally there is the Hybrid Business Process Management Tool that integrates the findings of the two

engines, and orchestrates the communication from user interface to the analysis engines and the corresponding

business process models.

9.3.2.1 Conceptual Analytics Engine

The Conceptual Analytics Engine presupposes that all information that can be used to assess KPIs already exists

and can be drawn and integrated. It then enables to pose semantic queries over the Semantic Repository in order

to derive the measurement value of a KPI. We envision that such semantic queries could involve the formulas

over which the KPI measurement value can be produced as well as the required input parameters for those

formulas. The completion of KPI information would then map to just specifying these semantic queries.

In case of deriving best deployments and adaptation rule suggestions, the Conceptual Analytics Engine can

employ semantic rules which are able to reason over the existing knowledge in the Semantic Repository. As a

similar approach has been developed in the PaaSage project, such an approach will be used and enriched to

become semantically enhanced. The rules specified in the PaaSage KnowledgeBase could be exploited,

extended and transformed into semantic rules.

For adaptation rule derivation, the engine relies on posing semantic queries over the Semantic Repository which

will be used to draw all necessary information that is required in order to run the respective event pattern

discovery algorithm exploited for a certain set of KPIs/SLOs. Such knowledge can of course be drawn from the

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 165 of 184

existing adaptation rules of the BPaaS which could have been manually modelled by the technical consultant in

the BPaaS Allocation Environment or be produced in previous executions of the adaptation analysis.

 Tasks:
o Perform adaptation rule/event pattern derivation
o Perform best deployment analysis
o Perform KPI assessment
o Collect appropriate information from Execution Environment

 Main interfaces:
o Evaluation phase:

 Input: Process logs, monitoring logs, service logs, KPI specifications, SLO
specifications, BPaaS (on which the analysis/assessment will be applied)

 Output: assessment and analysis results to be visualized by the Hybrid Business
Dashboard.

9.3.2.2 Process Mining Engine

The Process Mining Engine needs to have access to workflow logs and monitoring logs in order to be able to

perform its analysis. The main analysis logic will focus on executing state-of-the-art process mining algorithms

possibly extended with the capability of exploiting semantic information. One or more algorithms can be executed

depending on their capabilities and the required focus aspects. This is due to the fact that each algorithm has

different capabilities and performance, makes different assumptions on the content of a process log, and can

focus on different aspects or different parts of a business process.

 Tasks:
o Perform workflow mining by executing one or more state-of-the-art algorithms
o Collect appropriate information from BPaaS Execution Environment

 Main interfaces:
o Evaluation phase:

 Input: Process logs, monitoring logs, service logs, KPI specifications, SLO
specifications, BPaaS (on which the analysis/assessment will be applied)

 Output: process mining results to be visualized by the Hybrid Business Dashboard.

9.3.3 Data Layer

The Semantic Repository will contain, after drawing it from the BPaaS Execution Environment, all the information

that is required for the execution of the two core components of the Business Logic Layer. This information, which

spans process, workflow, service, infrastructure and monitoring logs, will be semantically described and

integrated such that it enables a meaningful browsing over it as well as the posing of smart queries which allow

the derivation of information that can be invaluable for the required analysis on the next higher layer. The

semantic information will be specified in OWL. The Semantic Repository will be realized in the form of a Triple

Store which provides facilities to perform queries over a SPARQL endpoint. Various different Triple Stores could

be exploited for this purpose with different functional and non-functional characteristics. On top of the Triple

Store, there will be a reasoner which will enable validating the information stored as well as the derivation of new

knowledge via the firing of semantic rules.

The Meta Model Platform stores all business process, workflow and KPI models that are needed to view

dashboards, business processes or select workflows for analysis. It hence provides all necessary models and

their corresponding functionality such as export, transformation or graphical representation.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 166 of 184

9.3.4 Component Diagram

Figure 83 BPaaS Evaluation Environment – Components

9.4 Roles

The Cloud Socket Broker can involve users with different roles from the CloudSocket Broker organisation for

conducting the evaluation and analysis for BPaaSs. The roles involved can be the following:

 Business role (e.g., busines goal designer and business process designer) who is familiar with balanced

scorecard-like approaches and interested in the assessment of business KPIs and the discovery of

optimisation hints at the business process level.

 Technical role (e.g., cloud infrastructure designer, workflow designer, and technical consultant) that has

competence in technical rule management, and can thus configure the technical deployment and

monitoring, as well as expertise in workflow design. This role will be interested in the assessment of

technical KPIs and in obtaining optimisation hints at the technical/workflow level in the form of best

deployments, adaptation rules and workflow discrepancies/bottlenecks. It will certainly have the

expertise in completing the specification of adaptation rules by connecting event patterns to certain

adaptation actions or strategies.

9.5 Data Interface

The following data are envisioned to be exchanged internally in this environment or externally with respect to the

interaction with other CloudSocket environments:

 KPIs as well as SLOs can be exported from the dashboard in XML format and further translated –

required the corresponding modelling of the KPIs - to formats like OWL-Q, or WS-Agreement.

 Process/workflow logs can rely on a standardized format or can be specific to the Workflow Engine

implementation exploited. In either case, a transformation of logs to semantic information will be

required. Monitoring logs will be specified in OWL-Q. This means that aggregated measurements are

semantically enriched at the BPaaS Execution Environment. In Section 6, we have explicated the form

that the measurements contained in the logs will take based on the OWL-Q specification.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 167 of 184

10 SUMMARY AND CONCLUSIONS

The first Architecture of CloudSocket has been developed based on the use case and evaluation criteria analysis

as well as based on the original idea of the BPaaS Environment, corresponding to each phase of the Business

Process Management System Paradigm (BPMS).

The high level architecture describes the core functional capabilities of each BPaaS Environment to encourage

the development of alternative environments and hence enable a flexible configuration of different CloudSockets

depending on the needs of the CloudSocket Broker.

This intension is stressed by the fact that the so-called BPaaS Bundle, the configuration file that enable the

Business Process as a Service to become operative, allows missing sections to avoid vendor lock.

The conceptual bridge from domain specific business processes towards workflows that are in production in the

cloud, is established by a layers model-based approach, using extensions to standards that enable the linkages

and hence alignment between the different layers.

The description of each BPaaS Environment is not only understood as a technical specification but also as a

contribution to the terminology WIKI of CloudSocket that is seen as a living document.

The first iteration of the CloudSocket Architecture builds on tools and prototypes that need to be linked together to

a complete CloudSocket. The second iteration will integrate research findings to not only improve each individual

BPaaS Environment but to improve the CloudSocket as a whole.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 168 of 184

11 REFERENCES

(ADONIS 2015) ADONIS Community Edition, www.adonis-community.com/, access: 2015.07.24

(ADOxx 2015) ADOxx, www.adoxx.org, access: 2015.07.24

(Apache 2016) Apache License Version 2.0: http://www.apache.org/licenses/LICENSE-2.0, access : 30.09.2016

(APQC 2014) Process Classification Framework Version 6.1.1. Available at http://www.apqc.org/pcf [Access

December 23, 2015]

(BPMN 2015), OMG, http://www.bpmn.org, access: 16.03.2014

(CAMEL 2015), Rossini, A., Nikolov, N., Romero, D., Domaschka, J., Kritikos, K., Kirkham, T., Solberg, A.: D2.1.2

– CloudML Implementation Documentation. Paasage project deliverable (April 2014)

(CIDOC 2006) H. Kondylakis, M. Doerr and D. Plexousakis. Mapping Language for Information Integration.

Technical Report 385, ICS_FORTH, 2006.

(CloudML 2014) Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.. CloudMF: Applying MDE to Tame the

Complexity of Managing Multi-Cloud Applications. In: Bilof, R., editor. UCC 2014: 7th IEEE / ACM International

Conference on Utility and Cloud Computing. IEEE Computer Society; 2014, p. 269–277.

doi:10.1109/UCC.2014.36.

(CSBT 2015) CloudSocket Broker Tools, CloudSocket Project, Web Page: Broker Entry Point,

https://cloudsocket.eu/web/guest/brokercloudsocket, access: 31.07.2015

(C-SIG SLA 2014) Cloud Service Level Agreement Standardisation Guidelines. C-SIG on Service Level

Agreement. Available at https://ec.europa.eu/digital-agenda/en/news/cloud-service-level-agreement-

standardisation-guidelines [Accdess December 30, 2015).

(D2.1 2015) CloudSocket Project, D2.1 Use Case Analysis, www.cloudsocket.eu, access: 2015.05.18

(D2.2 2015) CloudSocket Project, D2.2 BPaaS References, Definitions & Common Terms, www.cloudsocket.eu,

access: 2015.07.01

(D2.3 2015) CloudSocket Project, D2.3 Cloud Transformation Framework Demonstrator,

https://cloudsocket.eu/transformation/, access: 31.07.2015

(D2.3a 2015) CloudSocket Project, D2.3 Cloud Transformation Framework Report,

https://www.cloudsocket.eu/deliverables, access: 31.07.2015

(D3.1 2015) CloudSocket Project, D3.1 Modelling Framework for BPaaS,

https://www.cloudsocket.eu/deliverables, access: 31.08.2016

(D3.2 2016) CloudSocket Project, D3.2 Modelling Prototypes for BPaaS,

https://www.cloudsocket.eu/deliverables, access: 31.08.2016

(D3.3 2016) CloudSocket Project, D3.3 BPaaS Allocation and Execution Environment Bluprints,

https://www.cloudsocket.eu/deliverables, access: 31.08.2016

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 169 of 184

(D4.1 2015) CloudSocket Project, D4.1 First CloudSocket Architecture

, https://www.cloudsocket.eu/deliverables, access: 31.08.2016

(D4.2_4.3_4.4 20916) CloudSocket Project, D4.2, 4.3, 4.4 Explanatory Notes: First Prototype,

https://www.cloudsocket.eu/deliverables, access: 31.08.2016

(D5.1 2016) CloudSocket Project, D5.1 Initial CloudSocket Setup Report,

https://www.cloudsocket.eu/deliverables, access: 31.08.2016

(D5.2 2016) CloudSocket Project, D5.2 CloudSocket BPaaS Reference Models,

https://www.cloudsocket.eu/deliverables, access: 31.08.2016

(D5.3 2016) CloudSocket Project, D5.3 CloudSocket BPaaS Allocations,

https://www.cloudsocket.eu/deliverables, access: 31.08.2016

(D8.1 2016) CloudSocket Project, D8.1 First Exploitation and Business Plan,

https://www.cloudsocket.eu/deliverables, access: 31.08.2016

(DMN 2015) OMG, 2015, Decision Model and Notation, http://www.omg.org/spec/DMN/1.0/Beta2/, access:

31.07.2015

(GNU 2016) GNU AGPL v3.0 - http://www.gnu.org/licenses/agpl-3.0.html, access : 30.09.2016

(GPL 2016) GPL v2: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html, access : 30.09.2016

(Kang 1990) Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feature-oriented

domain analysis (FODA) feasibility study (No. CMU/SEI-90-TR-21). Carnegie-Mellon Univ Pittsburgh Pa Software

Engineering Inst.

(Kar 1996) Karagiannis, D., Junginger, S. and Strobl, R.,1996, Introduction to Business Process Management

System Concepts, in: B. Scholz-Reiter, E. Stickel (Eds.): Business Process Modelling, Lecture Notes in Computer

Science, Springer.

(Kar 2002) Karagiannis, D.; Kühn, H.: Metamodelling Platforms. Invited Paper. In: Bauknecht, K.; Min Tjoa, A.;

Quirchmayer, G. (Eds.): Proceedings of the Third International Conference EC-Web 2002 – Dexa 2002, Aix-en-

Provence, France, September 2-6, 2002, LNCS 2455, Springer-Verlag, Berlin, Heidelberg, p. 182.

(Kar 2006) Karagiannis, D., Höfferer, P. 2006: Metamodels in Action: An overview, In: J. Filipe, B. Shishkov, M.

Helfert, ICSOFT 2006 - First Int. Conf. on Software and Data Technologies:IS27-36. Setúbal: Insticc Press.

(Mozilla 2016) Mozilla Public License (MPL) : https://www.mozilla.org/en-US/MPL/2.0/, access: 30.09.2016

(OAuth 2.0 2015) OAuth, www.oauth.net/, access: 25.08.2015

(OIDC 2015) OpenID, openid.net/connect/, access:25.08.2015

(OMG 2015) Decision Model and Notation, Object Management Group (OMG),

http://www.omg.org/spec/DMN/1.1/, 2016, access 27.09.2016

(OWL 2012) OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax (Second

Edition) Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, eds. W3C Recommendation, 11 December 2012,

http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/. Latest version available at http://www.w3.org/TR/owl2-

syntax/.

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 170 of 184

(OWL-Q 2006) K. Kritikos and D. Plexousakis, “Semantic QoS Metric Matching,” in ECOWS. IEEE Computer

Society, 2006, pp. 265–274.

(PaaSage 2015) PaaSage Project, http://www.paasage.eu/, access: 17.04.2015

(R2R) 1.Bizer, C., Schultz, A.: The R2R Framework: Publishing and Discovering Mappings on the Web. 1st

International Workshop on Consuming Linked Data (COLD 2010), Shanghai, November 2010.

(RDF 2014) Guus Schreiber, Yves Raimond. RDF 1.1 Primer. W3C Working Group Note, 25 February 2014. The

latest version is available at http://www.w3.org/TR/rdf11-primer/.

(RML) A. Dimou and M. Vander Sande. RDF Mapping Language (RML). Unofficial Draft, iMinds Multimedia Lab,

Ghent University. Available at: http://semweb.mmlab.be/rml/spec.html

(SAML 2015) OASIS Security Assertion Markup Language, www.oasis-open.org/standards#samlv2.0, access:

25.08.2015

(SCIM 2015) System for Cross-domain Identity Management, tools.ietf.org/wg/scim/, access: 31.08.2015

(SRL 2014) Kyriakos Kritikos, Jörg Domaschka, Alessandro Rossini: SRL: A Scalability Rule Language for

Multi-cloud Environments. CloudCom 2014: 1-9.

(Str 1996) Strahringer S (1996) Metamodellierung als Instrument des Methodenvergleichs: eine Evaluierung am

Beispiel objektorientierter Analysemethoden. Shaker, Aachen

(USDL 2015) J. Cardoso and C. Pedrinaci. Evolution and Overview of Linked USDL. In IESS, 2015.

(WS-Agreement 2009) Open Grid Forum, WS-Agreement Schema, http://schemas.ggf.org/graap/2007/03/ws-

agreement, access: 25.08.2015

(WS-Agreement 2011) Open Grid Forum, WS-Agreement, https://www.ogf.org/documents/GFD.192.pdf, access:

25.08.2015

(yourBPM 2015a) yourBPM, Installation Manual:

forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Light_Semantic_Composition_-

_Installation_and_Administration_Guide, access: 2015.07.24

(yourBPM 2015b) yourBPM, User Manual, forge.fi-

ware.eu/plugins/mediawiki/wiki/fiware/index.php/Light_Semantic_Composition_-_User_and_Programmer_Guide,

access: 2015.07.24

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 171 of 184

12 ANNEX

12.1 BPaaS Bundle Sending Christmas Greeting Cards

camel model BundleCamelModel {

 application ChristmasGreetingsCard {

 version: 'v0.3'

 description: 'This is the CAMEL file for the ChristmasGreetingsCard BPaaS Bundle'

 owner: Organization.Owner

 deployment models [

 BundleCamelModel.DeploymentPlan

]

 }

 organisation model Organization {

 organisation Company {

 www: 'www.example.com'

 postal address: 'postal-address'

 email: 'info@example.com'

 }

 user Owner {

 first name: 'firstname'

 last name: 'lastname'

 email: 'firstname.lastname@example.com'

 paasage credentials 'Not necessary for CloudSocket'

 cloud credentials [

 OmistackCredential {

 username: 'tenant:user'

 password: 'topsecret'

 cloud provider: BundleCamelModel.OmistackOrganisation.omistack

 }

]

 }

 security level: HIGH

 }

 deployment model DeploymentPlan {

 requirement set ChristmasGreetingsCardRequirement {

 os: Requirement.UbuntuOS

 }

 vm ChristmasGreetingsCardVM {

 requirement set ChristmasGreetingsCardRequirement

 provided host ChristmasGreetingsCardCompononentHost

 }

 internal component ChristmasGreetingsCardComponent {

 provided communication WebServiceCommunication { port: 2181 }

 required host ChristmasGreetingsCardHostReq

 configuration ChristmasGreetingsCardConfiguration {

 download: 'sudo apt-get install -y curl'

 install: 'curl -o ChristmasGreetingsCard_checkstart_ubuntu.sh https://omi-gitlab.e-technik.uni-

ulm.de/cloudsocket/prototype_v1_files/raw/master/ChristmasGreetingsCard_checkstart_ubuntu.sh && chmod +x

ChristmasGreetingsCard_checkstart_ubuntu.sh && curl -o ChristmasGreetingsCard_install_ubuntu.sh https://omi-gitlab.e-technik.uni-

ulm.de/cloudsocket/prototype_v1_files/raw/master/ChristmasGreetingsCard_install_ubuntu.sh && chmod +x

ChristmasGreetingsCard_install_ubuntu.sh && ./ChristmasGreetingsCard_install_ubuntu.sh'

 configure: ''

 start: '/apache-tomcat-7.0.65/bin/catalina.sh run'

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 172 of 184

 upload: 'source /ChristmasGreetingsCard_checkstart_ubuntu.sh'

 }

 }

 hosting ChristmasGreetingsCardToChristmasGreetingsCardVM {

 from ChristmasGreetingsCardComponent.ChristmasGreetingsCardHostReq to

ChristmasGreetingsCardVM.ChristmasGreetingsCardCompononentHost

 }

 vm instance ChristmasGreetingsCardOmistackSmallInstance typed

BundleCamelModel.DeploymentPlan.ChristmasGreetingsCardVM {

 vm type: BundleCamelModel.OmistackProvider.Omistack.VM.VMType

 vm type value: BundleCamelModel.OmistackType.VMTypeEnumeration.m1.small

 provided host instance ChristmasGreetingsCardComponentHostInstance typed

ChristmasGreetingsCardVM.ChristmasGreetingsCardCompononentHost

 }

 internal component instance ChristmasGreetingsCardComponentInstance typed

BundleCamelModel.DeploymentPlan.ChristmasGreetingsCardComponent{

 required host instance ChristmasGreetingsCardInstanceHostReq typed

ChristmasGreetingsCardComponent.ChristmasGreetingsCardHostReq

 provided communication instance ChristmasGreetingsCardWebServiceCommunication typed

ChristmasGreetingsCardComponent.WebServiceCommunication

 }

 host ChristmasGreetingsCardComponentInstance.ChristmasGreetingsCardInstanceHostReq on

ChristmasGreetingsCardOmistackSmallInstance.ChristmasGreetingsCardComponentHostInstance typed

BundleCamelModel.DeploymentPlan.ChristmasGreetingsCardToChristmasGreetingsCardVM

 }

 requirement model Requirement {

 slo CPU_HIGH_SLO{

 service level: BundleCamelModel.MetricModel.CPU_HIGH_RawMetricCondition

 }

 slo CPU_AVG_2MIN_SLO {

 service level: BundleCamelModel.MetricModel.CPU_AVG_2MIN_Condition

 }

 slo CPU_AVG_DAILY_SLO{

 service level: BundleCamelModel.MetricModel.CPU_AVG_DAILY_Condition

 }

 slo RAM_MAX_DAILY_SLO{

 service level: BundleCamelModel.MetricModel.RAM_MAX_DAILY_Condition

 }

 os UbuntuOS {os: 'Ubuntu' 64os}

 }

 metric model MetricModel {

 property CpuUtilization{

 type: MEASURABLE

 }

 property RamUtilization{

 type: MEASURABLE

 }

 sensor CpuSensor{

 configuration: 'cpu_usage;de.uniulm.omi.cloudiator.visor.sensors.CpuUsageSensor'

 }

 sensor RamSensor{

 configuration: 'memory_usage;de.uniulm.omi.cloudiator.visor.sensors.MemoryUsageSensor'

 }

 schedule Schedule10Seconds{

 type: FIXED_RATE

 interval: 10

 unit: BundleCamelModel.UnitModel.Seconds

 }

 schedule Schedule2Minutes{

 type: FIXED_RATE

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 173 of 184

 interval: 2

 unit: BundleCamelModel.UnitModel.Minutes

 }

 schedule ScheduleDaily{

 type: FIXED_RATE

 interval: 24

 unit: BundleCamelModel.UnitModel.Hours

 }

 window Window4Minutes {

 window type: SLIDING

 size type: TIME_ONLY

 time size: 4

 unit: BundleCamelModel.UnitModel.Minutes

 }

 window WindowDaily {

 window type: FIXED

 size type: TIME_ONLY

 time size: 24

 unit: BundleCamelModel.UnitModel.Hours

 }

 raw metric CPU_RawMetric {

 value direction: 0

 layer: IaaS

 property: BundleCamelModel.MetricModel.CpuUtilization

 unit: BundleCamelModel.UnitModel.CpuUnit

 value type: BundleCamelModel.TypeModel.Between_0_100

 }

 composite metric CPU_AVG_CompositeMetric {

 value direction: 0

 layer: IaaS

 property: BundleCamelModel.MetricModel.CpuUtilization

 unit: BundleCamelModel.UnitModel.CpuUnit

 value type: BundleCamelModel.TypeModel.Between_0_100

 metric formula Formula{

 function arity: UNARY

 function pattern: REDUCE

 MEAN(BundleCamelModel.MetricModel.CPU_RawMetric)

 }

 }

 raw metric context CPU_RawMetricContext{

 metric: BundleCamelModel.MetricModel.CPU_RawMetric

 sensor: MetricModel.CpuSensor

 component: BundleCamelModel.DeploymentPlan.ChristmasGreetingsCardComponent

 schedule: BundleCamelModel.MetricModel.Schedule10Seconds

 quantifier: ALL

 }

 composite metric context CPU_AVG_2MIN_CompositeMetricChristmasGreetingsCardComponentContext {

 metric: BundleCamelModel.MetricModel.CPU_AVG_CompositeMetric

 component: BundleCamelModel.DeploymentPlan.ChristmasGreetingsCardComponent

 window: BundleCamelModel.MetricModel.Window4Minutes

 schedule: BundleCamelModel.MetricModel.Schedule2Minutes

 composing metric contexts [BundleCamelModel.MetricModel.CPU_RawMetricContext]

 quantifier: ALL

 }

 composite metric context CPU_AVG_DAILY_CompositeMetricChristmasGreetingsCardComponentContext {

 metric: BundleCamelModel.MetricModel.CPU_AVG_CompositeMetric

 component: BundleCamelModel.DeploymentPlan.ChristmasGreetingsCardComponent

 window: BundleCamelModel.MetricModel.WindowDaily

 schedule: BundleCamelModel.MetricModel.ScheduleDaily

 composing metric contexts [BundleCamelModel.MetricModel.CPU_RawMetricContext]

 quantifier: ALL

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 174 of 184

 }

 metric condition CPU_HIGH_RawMetricCondition {

 context: BundleCamelModel.MetricModel.CPU_RawMetricContext

 threshold: 80.0

 comparison operator: < =

 }

 metric condition CPU_AVG_2MIN_Condition {

 context:

BundleCamelModel.MetricModel.CPU_AVG_2MIN_CompositeMetricChristmasGreetingsCardComponentContext

 threshold: 20.0

 comparison operator: < =

 }

 metric condition CPU_AVG_DAILY_Condition {

 context:

BundleCamelModel.MetricModel.CPU_AVG_DAILY_CompositeMetricChristmasGreetingsCardComponentContext

 threshold: 40.0

 comparison operator: < =

 }

 raw metric RAM_RawMetric {

 value direction: 0

 layer: IaaS

 property: BundleCamelModel.MetricModel.RamUtilization

 unit: BundleCamelModel.UnitModel.RamUnit

 value type: BundleCamelModel.TypeModel.Between_0_100

 }

 composite metric RAM_MAX_CompositeMetric

 {

 value direction: 0

 layer: IaaS

 property: BundleCamelModel.MetricModel.RamUtilization

 unit: BundleCamelModel.UnitModel.RamUnit

 value type: BundleCamelModel.TypeModel.Between_0_100

 metric formula Formula{

 function arity: UNARY

 function pattern: REDUCE

 MAX(BundleCamelModel.MetricModel.RAM_RawMetric)

 }

 }

 raw metric context RAM_RawMetricContext {

 metric: BundleCamelModel.MetricModel.RAM_RawMetric

 sensor: MetricModel.RamSensor

 component: BundleCamelModel.DeploymentPlan.ChristmasGreetingsCardComponent

 schedule: BundleCamelModel.MetricModel.Schedule10Seconds

 }

 composite metric context RAM_MAX_DAILY_CompositeMetricContext{

 metric: BundleCamelModel.MetricModel.RAM_MAX_CompositeMetric

 component: BundleCamelModel.DeploymentPlan.ChristmasGreetingsCardComponent

 window: BundleCamelModel.MetricModel.WindowDaily

 schedule: BundleCamelModel.MetricModel.ScheduleDaily

 composing metric contexts [BundleCamelModel.MetricModel.RAM_RawMetricContext]

 quantifier: ALL

 }

 metric condition RAM_MAX_DAILY_Condition {

 context: BundleCamelModel.MetricModel.RAM_MAX_DAILY_CompositeMetricContext

 threshold: 60.0

 comparison operator: < =

 }

 }

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 175 of 184

 type model TypeModel {

 range Between_0_100 {

 primitive type: DoubleType

 lower limit {

 double value 0.0

 }

 upper limit {

 double value 100.0

 }

 }

 }

 unit model UnitModel {

 dimensionless {

 CpuUnit: PERCENTAGE

 }

 dimensionless {

 RamUnit: PERCENTAGE

 }

 time interval unit {

 Seconds : SECONDS

 }

 time interval unit {

 Minutes : MINUTES

 }

 time interval unit {

 Hours : HOURS

 }

 }

 location model OmistackLocation {

 country DE {

 name: Germany

 }

 }

 organisation model OmistackOrganisation {

 provider omistack {

 www: "www.uni-ulm.de"

 postal address: "Ulm University, Institute of Information Resource Management, Albert-Einstein-Allee 43, D-89081 Ulm"

 email: ""

 public

 IaaS provider model: BundleCamelModel.OmistackProvider

 }

 data centre OmistackDataCentre {

 code name: gwdg location: OmistackLocation.DE

 }

 security level: LOW

 }

 provider model OmistackProvider {

 constraints {

 implies M1_SMALL_Constraint_Mapping {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.VM attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMMemory from value:

 "m1.small" : 0 to value: int value 2048

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMCores from value:

 "m1.small" : 0 to value: int value 1

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMStorage from value:

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 176 of 184

 "m1.small" : 0 to value: int value 20

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMTypeCloudProviderId

 from value: "m1.small" : 0 to value: "RegionOne/2" : 0

 }

 }

 }

 implies M1_LARGE_Constraint_Mapping {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.VM attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMMemory from value:

 "m1.large" : 1 to value: int value 8192

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMCores from value:

 "m1.large" : 1 to value: int value 4

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMStorage from value:

 "m1.large" : 0 to value: int value 80

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMTypeCloudProviderId

 from value: "m1.large" : 1 to value: "RegionOne/4" : 1

 }

 }

 }

 implies

 RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97_Constraint_Mapping_OS {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97

 to: BundleCamelModel.OmistackProvider.Omistack.VM attribute constraints {

 attribute constraint {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97.VMImageId

 to: BundleCamelModel.OmistackProvider.Omistack.VM.VMOS from value:

 string value "RegionOne/9c154d9a-fab9-4507-a3d7-21b72d31de97" to value:

 "Ubuntu Server 14.04.2 AMD64 LTS" : 0

 }

 attribute constraint {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97.VMImageId

 to: BundleCamelModel.OmistackProvider.Omistack.VM.OSVendorType from

value:

 string value "RegionOne/9c154d9a-fab9-4507-a3d7-21b72d31de97" to value:

 NIX : 1

 }

 attribute constraint {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97.VMImageId

 to: BundleCamelModel.OmistackProvider.Omistack.VM.OSArchitecture

 from value: string value

 "RegionOne/9c154d9a-fab9-4507-a3d7-21b72d31de97" to value: AMD64 : 0

 }

 }

 }

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 177 of 184

 implies

 RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97_Constraint_Mapping_LOCATION {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97

 to: BundleCamelModel.OmistackProvider.Omistack.Location

 attribute constraints {

 attribute constraint {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97.VMImageId

 to: BundleCamelModel.OmistackProvider.Omistack.Location.LocationId

 from value: string value

 "RegionOne/9c154d9a-fab9-4507-a3d7-21b72d31de97" to value: RegionOne : 0

 }

 }

 }

 implies

 RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938_Constraint_Mapping_OS {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938

 to: BundleCamelModel.OmistackProvider.Omistack.VM attribute constraints {

 attribute constraint {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938.VMImageId

 to: BundleCamelModel.OmistackProvider.Omistack.VM.VMOS from value:

 string value "RegionOne/11a845d0-7ed3-48c8-a36a-9a76a2fe4938" to value:

 "Windows2012R2_PW_No_Firewall_0.2" : 0

 }

 attribute constraint {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938.VMImageId

 to: BundleCamelModel.OmistackProvider.Omistack.VM.OSVendorType from

value:

 string value "RegionOne/11a845d0-7ed3-48c8-a36a-9a76a2fe4938" to value:

 WINDOWS : 0

 }

 attribute constraint {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938.VMImageId

 to: BundleCamelModel.OmistackProvider.Omistack.VM.OSArchitecture

 from value: string value

 "RegionOne/11a845d0-7ed3-48c8-a36a-9a76a2fe4938" to value: AMD64 : 0

 }

 }

 }

 implies

 RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938_Constraint_Mapping_LOCATION {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938

 to: BundleCamelModel.OmistackProvider.Omistack.Location

 attribute constraints {

 attribute constraint {

 from:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMImage.RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938.VMImageId

 to: BundleCamelModel.OmistackProvider.Omistack.Location.LocationId

 from value: string value

 "RegionOne/11a845d0-7ed3-48c8-a36a-9a76a2fe4938" to value: RegionOne : 0

 }

 }

 }

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 178 of 184

 implies M1_TINY_Constraint_Mapping {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.VM attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMMemory from value:

 "m1.tiny" : 2 to value: int value 512

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMCores from value:

"m1.tiny"

 : 2 to value: int value 1

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMStorage from value:

 "m1.tiny" : 2 to value: int value 1

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMTypeCloudProviderId

 from value: "m1.tiny" : 2 to value: "RegionOne/1" : 2

 }

 }

 }

 implies M1_MEDIUM_Constraint_Mapping {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.VM attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMMemory from value:

 "m1.medium" : 3 to value: int value 4096

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMCores from value:

 "m1.medium" : 3 to value: int value 2

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMStorage from value:

 "m1.medium" : 3 to value: int value 40

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMTypeCloudProviderId

 from value: "m1.medium" : 3 to value: "RegionOne/3" : 3

 }

 }

 }

 implies M1_XLARGE_Constraint_Mapping {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.VM attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMMemory from value:

 "m1.xlarge" : 4 to value: int value 16384

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMCores from value:

 "m1.xlarge" : 4 to value: int value 8

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMStorage from value:

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 179 of 184

 "m1.xlarge" : 4 to value: int value 160

 }

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.VM.VMTypeCloudProviderId

 from value: "m1.xlarge" : 4 to value: "RegionOne/5" : 4

 }

 }

 }

 implies M1_SMALL_Constraint_Mapping_LOCATION {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.Location attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.Location.LocationId from value:

 "m1.small" : 0 to value: RegionOne : 0

 }

 }

 }

 implies M1_LARGE_Constraint_Mapping_LOCATION {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.Location attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.Location.LocationId from value:

 "m1.large" : 1 to value: RegionOne : 0

 }

 }

 }

 implies M1_TINY_Constraint_Mapping_LOCATION {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.Location attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.Location.LocationId from value:

 "m1.tiny" : 2 to value: RegionOne : 0

 }

 }

 }

 implies M1_MEDIUM_Constraint_Mapping_LOCATION {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.Location attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.Location.LocationId from value:

 "m1.medium" : 3 to value: RegionOne : 0

 }

 }

 }

 implies M1_XLARGE_Constraint_Mapping_LOCATION {

 from: BundleCamelModel.OmistackProvider.Omistack.VM to:

 BundleCamelModel.OmistackProvider.Omistack.Location attribute constraints {

 attribute constraint {

 from: BundleCamelModel.OmistackProvider.Omistack.VM.VMType to:

 BundleCamelModel.OmistackProvider.Omistack.Location.LocationId from value:

 "m1.xlarge" : 4 to value: RegionOne : 0

 }

 }

 }

 }

 root feature Omistack {

 attributes {

 attribute DeploymentModel {

 value: string value Private value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute ServiceModel {

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 180 of 184

 value: string value ^IaaS value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute Availability {

 unit type: PERCENTAGE value: string value "95" value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute Driver {

 value: string value "openstack-nova" value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute EndPoint {

 value: string value

 "http://omistack-beta.e-technik.uni-ulm.de:5000/v2.0" value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute Name {

 value: string value omistack value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 }

 sub-features {

 feature VM {

 attributes {

 attribute VMType {

 value type: BundleCamelModel.OmistackType.VMTypeEnumeration

 }

 attribute VMOS {

 value type: BundleCamelModel.OmistackType.VMOsEnum

 }

 attribute VMMemory {

 unit type: MEGABYTES value type:

BundleCamelModel.OmistackType.MemoryList

 }

 attribute VMCores {

 value type: BundleCamelModel.OmistackType.CoresList

 }

 attribute CostPerHour {

 value type: BundleCamelModel.OmistackType.CostRange

 }

 attribute VMStorage {

 unit type: GIGABYTES value type:

 BundleCamelModel.OmistackType.StorageList

 }

 attribute OSVendorType {

 value type: BundleCamelModel.OmistackType.OSVendorType

 }

 attribute OSArchitecture {

 value type: BundleCamelModel.OmistackType.OSArchitectureType

 }

 attribute VMTypeCloudProviderId {

 value type:

BundleCamelModel.OmistackType.VMTypeCloudProviderIdEnum

 }

 }

 sub-features {

 exclusive VMImage {

 feature cardinality {

 cardinality: 1 .. 1 value: 1

 }

 variants {

 feature

RegionOne_11a845d0_7ed3_48c8_a36a_9a76a2fe4938 {

 attributes {

 attribute VMImageId {

 value: string value

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 181 of 184

 "RegionOne/11a845d0-7ed3-48c8-a36a-9a76a2fe4938" value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute DefaultLoginName {

 value: string value

Administrator value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute DefaultLoginPassword {

 value: string value

Admin1 value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 }

 feature cardinality {

 cardinality: 0 .. 1

 }

 }

 feature

RegionOne_9c154d9a_fab9_4507_a3d7_21b72d31de97 {

 attributes {

 attribute VMImageId {

 value: string value

 "RegionOne/9c154d9a-fab9-4507-a3d7-21b72d31de97" value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute DefaultLoginName {

 value: string value

ubuntu value type:

 BundleCamelModel.OmistackType.StringValueType

 }

 attribute DefaultLoginPassword {

 value type:

BundleCamelModel.OmistackType.StringValueType

 }

 }

 feature cardinality {

 cardinality: 0 .. 1

 }

 }

 }

 }

 }

 feature cardinality {

 cardinality: 1 .. 8

 }

 }

 feature Location {

 attributes {

 attribute LocationId {

 value type: BundleCamelModel.OmistackType.LocationIdType

 }

 attribute longitude {

 value: float value 9.96291

 }

 attribute latitude {

 value: float value 48.42599

 }

 }

 sub-features {

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 182 of 184

 feature EU {

 sub-features {

 feature Germany {

 sub-features {

 feature Ulm {

 feature cardinality {

 cardinality: 1 .. 1

 }

 }

 }

 feature cardinality {

 cardinality: 1 .. 1

 }

 }

 }

 feature cardinality {

 cardinality: 1 .. 1

 }

 }

 }

 feature cardinality {

 cardinality: 1 .. 1 value: 1

 }

 }

 }

 feature cardinality {

 cardinality: 1 .. 1

 }

 }

 }

 type model OmistackType {

 enumeration VMTypeCloudProviderIdEnum {

 values ["RegionOne/2" : 0,

 "RegionOne/4" : 1,

 "RegionOne/1" : 2,

 "RegionOne/3" : 3,

 "RegionOne/5" : 4]

 }

 enumeration VMOsEnum {

 values ["Ubuntu Server 14.04.2 AMD64 LTS" : 0,

 "Windows2012R2_PW_No_Firewall_0.2" : 1]

 }

 enumeration VMImageIdEnum {

 values ["RegionOne/11a845d0-7ed3-48c8-a36a-9a76a2fe4938" : 0,

 "RegionOne/9c154d9a-fab9-4507-a3d7-21b72d31de97" : 1]

 }

 range CostRange {

 primitive type: DoubleType lower limit {

 double value 0.054 included

 }

 upper limit {

 double value 0.095 included

 }

 }

 string value type StringValueType {

 primitive type: StringType

 }

 list StorageList {

 values [int value 20,

 int value 80,

 int value 1,

 int value 40,

 int value 160]

 }

 list MemoryList {

 values [int value 2048,

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 183 of 184

 int value 8192,

 int value 512,

 int value 4096,

 int value 16384]

 }

 enumeration OSVendorType {

 values [WINDOWS : 0,

 NIX : 1]

 }

 enumeration OSArchitectureType {

 values [AMD64 : 0]

 }

 enumeration LocationIdType {

 values [RegionOne : 0]

 }

 enumeration VMTypeEnumeration {

 values ["m1.small" : 0,

 "m1.large" : 1,

 "m1.tiny" : 2,

 "m1.medium" : 3,

 "m1.xlarge" : 4]

 }

 list CoresList {

 values [int value 1,

 int value 2,

 int value 4,

 int value 8]

 }

 }

}

12.2 WS-Agreement Sample

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<wsag:Template wsag:TemplateId="01fc0444-4132-4b48-9ee4-5b7579d11092" xmlns:cs="http://wsag.sla.cloudsocket.eu"

xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" xmlns:sla="http://sla.atos.eu">

 <wsag:Name>Template JIRA ticketing</wsag:Name>

 <wsag:Context>

 <wsag:AgreementResponder>BROKER-B</wsag:AgreementResponder>

 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>

 <sla:Service>BPAAS-1</sla:Service>

 <cs:context>

 <cs:assessment>BROKER-B</cs:assessment>

 <cs:monitoring>BROKER-B</cs:monitoring>

 </cs:context>

 </wsag:Context>

 <wsag:Terms>

 <wsag:All>

 <wsag:GuaranteeTerm wsag:Name="gt03">

 <wsag:ServiceLevelObjective>

 <wsag:KPITarget>

 <wsag:KPIName>gt03_kpi</wsag:KPIName>

 <wsag:CustomServiceLevel>

 <cs:slo>

 <cs:constraint>CPU_AVG_2MIN_Condition NOT EXISTS</cs:constraint>

 <cs:description>Ensures that AVG(CPU_Usage, 2min) < 50%</cs:description>

 </cs:slo>

 </wsag:CustomServiceLevel>

 </wsag:KPITarget>

 </wsag:ServiceLevelObjective>

 <wsag:BusinessValueList>

 <wsag:CustomBusinessValue count="1" duration="P0Y0M0DT0H0M0.000S">

 <sla:Penalty type="discount" expression="0.05" unit="%" validity="P1D"/>

 <sla:description>Violation of SLO incurs in a 0,05% monthly discount.</sla:description>

 </wsag:CustomBusinessValue>

Copyright © 2016 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 184 of 184

 </wsag:BusinessValueList>

 </wsag:GuaranteeTerm>

 <wsag:GuaranteeTerm wsag:Name="gt04">

 <wsag:ServiceLevelObjective>

 <wsag:KPITarget>

 <wsag:KPIName>gt04_kpi</wsag:KPIName>

 <wsag:CustomServiceLevel>

 <cs:slo>

 <cs:constraint>CPU_AVG_DAILY_Condition NOT EXISTS</cs:constraint>

 <cs:description>Ensures that AVG(CPU_Usage, 1day) < 40%</cs:description>

 </cs:slo>

 </wsag:CustomServiceLevel>

 </wsag:KPITarget>

 </wsag:ServiceLevelObjective>

 <wsag:BusinessValueList>

 <wsag:CustomBusinessValue count="1" duration="P0Y0M0DT0H0M0.000S">

 <sla:Penalty type="discount" expression="5" unit="%" validity="P1M"/>

 <sla:description>Violation of SLO incurs in a 5% monthly discount. If twice in a day, that day is not charged.</sla:description>

 </wsag:CustomBusinessValue>

 <wsag:CustomBusinessValue count="2" duration="P1D">

 <sla:Penalty type="discount" expression="100" unit="%" validity="P1D"/>

 <sla:description>Violation of SLO incurs in a 5% monthly discount. If twice in a day, that day is not charged.</sla:description>

 </wsag:CustomBusinessValue>

 </wsag:BusinessValueList>

 </wsag:GuaranteeTerm>

 </wsag:All>

 </wsag:Terms>

</wsag:Template>

