
1

ADOxx KPI WEB DASHBOARD:
Documentation on Architecture and
First Prototype

Project Title : KPI Web Dashboard for monitoring specific KPIs and Goals

Deliverable : D1.0

Type of Deliverable : DataSource Wrapper and KPI Model:

 Architecture and Prototype Implementation

Nature of Deliverable : Documentation on Implementation of Project

Dissemination Level : Public

Delivery Date : June 30, 2017

Name of student : Frederick Dodzi Agbleke

Author(s) : Frederick Dodzi Agbleke, Damiano Falcioni

Reviewer(s) : Robert Woitsch, Barbara Re

Organization : BOC Asset Management (Research & Development)

Associated University : University of Camerino

Type of University Program : Erasmus+ Traineeship 2016/2017

Abstract

A Key Performance Indicator (KPI) is a measurable value that demonstrates how effectively an

organization is achieving key business objectives. Organizations use KPIs to evaluate their success at

reaching targets.

D1.0 is the first deliverable of documentation KPI Web Dashboard project which is based on the

ADOxx meta-modeling environment. This document describes the architecture of some components

of the dashboard and as well the implementation of an initial prototype.

In the prototype part of this deliverable, the delivered code is briefly described. We start by detailing a

step-by-step process on how to set up (i.e. the DataSource wrapper and KPI model parts of the web

dashboard excluding the implementation of the Dashboard Web interface) by get the source codes,

build and run the dashboard. It also describes how the dashboard can be used with an example data

source (i.e. excel sheet).

Glossary, acronyms & abbreviations

KPI Key Performance Indicator

JSON JavaScript Object Notation

REST Representational State Transfers

URI Uniform Resource Identifier

HTTP HyperText Transfer Protocol

graphRep Graphical Representation

attrRep Attribute Representation

NoSQL Not Only SQL

MSSQL Server Microsoft SQL Server

Keyword list

KPI Web Dashboard, KPI Model, Datasource Wrapper, Data source, KPI, Goal, Algorithm, Web

service, Web dashboard interface

1. Introduction ... 6

1.1. Deliverable objectives .. 9

1.2. Deliverable Outline .. 9

2. KPI Model and the DataSource Wrapper Components ... 10

2.1. KPI Dashboard General Architecture .. 10

2.1.1. Component Diagram ... 10

2.1.2. Sequence Diagram... 11

3. Development of the KPI Dashboard Components ... 13

3.1. The DataSource Wrapper Overview .. 13

3.1.1. Dashboard Maven project for implementing the DataSource Wrapper 13

3.1.1.1. Java Packages and constituent classes in the Dashboard project 13

3.1.1.2. MySQL Module Implementation .. 15

3.1.1.3. MSSQLServer Module Implementation ... 16

3.1.1.4. Excel Module Implementation .. 17

3.1.1.5. REST Service Module Implementation .. 18

3.1.1.6. TripleStore Module Implementation ... 19

3.1.1.7. JsonFile Module Implementation ... 20

3.1.2. Detailed Description of DataSource Wrapper Class ... 21

3.1.3. Implementing the DataSource Wrapper as REST Web Service 21

3.2. The KPI Model ... 22

3.2.1. ADOxx Experimentation Library as a default library ... 22

3.2.2. Defining Classes and Attributes for the KPI modeling language 22

3.2.3. Defining Graphical Representation for Classes and Notebook Attributes 24

3.2.5. Creating a User to access the Modeling Toolkit .. 24

3.2.7. AdoScript to retrieve Notebook Attribute values of the instances on a KPI model 25

3.2.8. Configuring “KpiDashboardUtils” in the ADOxx development toolkit 26

3.2.9. The Dashboard Helper ... 26

3.2.9.1. Methods in the Dashboard Helper .. 26

3.2.9.2. Configuring the Dashboard Helper with the KPI Model 28

4. ADOxx Training Sessions Dashboard Example .. 33

4.1. Prerequisite Tools and source codes .. 33

4.2. Setting Up The Training Session Web Dashboard .. 33

4.2.1. ADOxx Environment Implementations ... 33

4.2.1.1. ADOxx Training Session KPI Model ... 37

4.3. Description of objects and relevant attribute values of the Training Session KPI model .. 38

4.2.2. Importing the Dashboard war into Eclipse IDE .. 49

4.1.3. Configuration and Visualization of the KPI model Result .. 50

5. Conclusions and Plans for Future Work .. 52

References .. 53

List of Figures

Figure 2. 1 KPI Dashboard Conceptualized Structure .. 8

Figure 2. 2 KPI Dashboard Component Diagram ... 11

Figure 2. 3 KPI Dashboard Sequence Diagram .. 12

Figure 2. 4 Dashboard Project to be imported in Eclipse ... 14

Figure 3. 1 Library Management settings ... 22

Figure 3. 2 Class Diagram of KPI Meta-Model .. 23

Figure 3. 3 Creating a Modeltype and adding Library attributes .. 24

Figure 3. 4 Example of a KPI Model showing objects and their relations ... 25

Figure 3. 5 Selecting a DataSource Type using the Dashboard Helper ... 27

Figure 3. 6 Setting Configuration parameters for the selected DataSource type 27

Figure 3. 7 Adding User Input .. 28

Figure 3. 8 Adding KPI Fields to be retrieved .. 28

Figure 3. 9 Create New attribute for DataSource class ... 29

Figure 3. 10 Setting a program call to procedure to execute the Dashboard Helper jar 29

Figure 3. 11 Adding the new attribute to the DataSource “attrRep” .. 30

Figure 3. 12 Button to execute Dashboard helper jar.. 30

Figure 3. 13 Creating KPI attribute and setting program call to execute Helper jar 31

Figure 3. 14 Button to configure KPI Fields with the Dashboard Helper ... 32

Figure 4. 1 ADOxx Library Management ... 33

Figure 4. 2 KPI Dashboard Library Import ... 34

Figure 4. 3 Creating a New User and associate with the corresponding Library .. 34

Figure 4. 4 File management for adding files to ADOxx database ... 35

Figure 4. 5 ADOxx External coupling to execute AdoScript file ... 36

Figure 4. 6 KPI Model Import .. 36

Figure 4. 7 KPI Model for the second Excel sheet available in the DataSource .. 37

Figure 4. 8 KPI Model for the first Excel sheet available in the DataSource ... 38

Figure 4. 9 DataSource object configured to select sheet 2 of the Excel data .. 39

Figure 4. 10 Trigger the Dashboard Helper to configure DataSource object ... 39

Figure 4. 11 Setting Dashboard REST Endpoint .. 39

Figure 4. 12 Selecting a DataSource type ... 39

Figure 4. 13 Configurations Parameters required for connecting and retrieving data 40

Figure 4. 14 Setting User Inputs (OPTIONAL) .. 40

Figure 4. 15 DataSource object with Excel sheet configuration parameters .. 41

Figure 4. 16 Single Session Attendance KPI .. 42

Figure 4. 17 Configuring Single Session Attendance KPI .. 42

Figure 4. 18 Yearly Attendance KPI ... 43

Figure 4. 19 Configuring Yearly Attendance KPI .. 43

Figure 4. 20 Average Yearly Attendance KPI .. 44

Figure 4. 21 Configuring Average Yearly Attendance KPI .. 44

Figure 4. 22 Group by Year Algorithm ... 45

Figure 4. 23 Configuration of Group by Year Algorithm ... 45

Figure 4. 24 Calculate Average Algorithm ... 46

Figure 4. 25 Configuring Calculate Average Algorithm .. 46

Figure 4. 26 Goals to be evaluated .. 47

Figure 4. 27 KPI Model for Excel sheet 1 .. 47

Figure 4. 28 Triggering the AdoScript to Generate the model JSON ... 48

Figure 4. 29 Exporting the generated model JSON .. 48

Figure 4. 30 Eclipse IDE import of the Dashboard war file ... 49

Figure 4. 31 Deploying Dashboard project on Tomcat Application ... 49

Figure 4. 32 Web Dashboard User interface ... 50

Figure 4. 33 Uploading model Export file on to the Dashboard to visualize KPIs 50

Figure 4. 34 Dashboard widgets ... 50

Figure 4. 35 Dashboard Overview of the ADOxx Training Sessions Data .. 51

1. Introduction

The main objective of this project is to provide a KPI (Key Performance Indicator) Web

Dashboard in order create a visualization of data from organizations and monitor performance

through the achievement or otherwise of defined objectives and targets according to the overall

business goals. A KPI Dashboard enables businesses to create, manage and analyze data from

KPIs. This KPI dashboard implementation supports the utilization of data from various data

sources which will be managed by DataSource Wrapper with the necessary connection

parameters set right to aid to retrieval of data. This document looks at how data sources such as

Excel, MSSQLServer, MySQL, TripleStore, REST service and from a JSON file were created

and added to the DataSource Wrapper. The Wrapper has an extensible characteristic which

provides possibility for new data sources such as Microsoft Access, BigData, NoSQL databases,

etc to be added.

Figure 2. 1 KPI Dashboard Conceptualized Structure

The first part deals with a detailed explanation of the Data source Wrapper which serves as a

data access layer is created from scratch.

The second part of the document explains how the project shows how the ADOxx modeling

environment helps the user to model all aspects of a KPI where data provided by the model will

be evaluated based on some KPI values in order to assess the performance and achievement or

otherwise of particular goals. The document attempts to explain how classes, attributes and their

relations are created in the ADOxx development environment and with the help of AdoScript

code (scripting language for ADOxx meta-model platform) created to give some functionality to

the KPI model.

This part also explains how DataSource Wrapper (which is a Java component) provides data

depending on which fields are required to provide a KPI value. The data source is selected by

using connection parameters set in the KPI Model provided by the user for the particular data

source to be used. This will aid students or developers who desire to build this dashboard project

and subsequently improve on it to a fair idea how to start. It will actually provide a basis for

future development in this area of KPI Dashboard development allowing them have more

exposure with the ADOxx meta-modeling environment in addition.

1.1. Deliverable objectives

This document provides documentation and a prototype which will serve as basis for students

and developers to understand how components of the KPI Dashboard are created. It intends to

give start to further developments by interested developers who wish to work on projects with

regards to organization KPI monitoring. It covers:

 A technical documentation for both the Data source Wrapper and the KPI Model

 A first implementation of the components of the KPI Dashboard and how they all work

together to provide a first implementation of a working system.

1.2. Deliverable Outline

This document provides a detailed documentation and implementation of the KPI Dashboard and

its component. It is divided into five (5) chapters with described as follows:

 Chapter 2 describes the methodology and the supporting tools that were used to create the

various components of the KPI Web Dashboard. In particular, depicting the architectural

framework, the functionalities and interactions of the individual components and sub-

components.

 Chapter 3 attempts to give detailed description of how each component is created from

scratch with particular focus on the KPI Model and the DataSource Wrapper components. It

goes ahead to show how an example working Dashboard is created, with downloads of

source codes, libraries and other files needed to build and run the system to give a better

understanding of how the components work together to generate a final result on the

dashboard.

 Chapter 4 introduces an implementation manual to assist users and developers to get the first

example implementation of the KPI Web Dashboard.

 Finally, Chapter 5 concludes the deliverable, with a summary of its usefulness and

contributions as well as outlines for future works and improvements.

2. KPI Model and the DataSource Wrapper Components

The main Web Dashboard interface which visualizes the data works in tandem with the KPI

model. The model also connects to a data source through a web service call. Therefore it is

important to have a technical understanding of these components and interactions between these

components.

This chapter introduces an architectural overview of the above mentioned components while

going into details where needed and also briefly describing the functionality of each component.

2.1. KPI Dashboard General Architecture

The architecture of the dashboard is composed of three (3) main components as already

described above. It is made up the KPI model, the Data Wrapper and Web dashboard service

including the interactions through the interfaces of these components. We use:

i. A component diagram which describes the organization of physical software components

in the system and the interfaces with which these individual components interact.

ii. A sequence diagram and Use Case diagram to describe the flow of logic in a visual

manner showing the behavior of the system.

2.1.1. Component Diagram

This systems architecture-level artifact depicts the high-level view of the software components

and more importantly the interfaces to these components. This view helps in understanding how

best the system can be organized especially during the development stage. The diagram shows

the three main component interfacing with each other:

 The ADOxx environment component is also composed of two (2) sub-components (i.e. the

development and modeling platform interacting to provide a basis for modeling KPIs).

 The KPI modeling components interfaces with the DataSource Wrapper by allowing

connection to a selected data source to get data and use the data to provide relevant KPIs

through evaluation algorithms. The diagram focuses on three (3) data sources configured in

the DataSource wrapper. Other additional data source configuration will be provided later in

this document.

 The web dashboard gets the output from the KPI model and generates a simple cockpit

displaying different assessment of goals and KPIs. This document does not focus on the

development of the Web Dashboard in detail since it is not part of the deliverables.

The figure below depicts the software components of the KPI Web Dashboard as described

above:

Figure 2. 2 KPI Dashboard Component Diagram

2.1.2. Sequence Diagram

The sequence diagram below describes the interaction among components of the KPI Web

Dashboard in terms of an exchange of messages or data showing communication between the

components over time. It shows in a visual manner runtime scenarios of the system as a user

goes through the various stages of deploying a running dashboard.

The diagram below depicts the deployment of the various components of system in order to

regenerate an already developed dashboard. It shows the flow of events through the components,

the communication flow which in the show the results to the user.

Figure 2. 3 KPI Dashboard Sequence Diagram

3. Development of the KPI Dashboard Components
This document pays particular focus on two (2) main components which are the DataSource

Wrapper and the KPI Model components. The DataSource Wrapper is a Java component which

is exposed as service that allows several data source modules to be created and added to it. Far

different from that, the KPI Model is created based on ADOxx meta-modeling platform. This

platform provides to the user the possibility to develop individual and domain-specific graphical

modeling language, by developing your syntax, semantic and graphical notation for your

modeling concepts.

3.1. The DataSource Wrapper Overview

The DataSource wrapper is a Java component that contains several modules used to get data

from the different type of data source. It contains implementation modules for various data

sources which are exposed through a java interface.

The general idea of the DataSource Wrapper is that, it gets as input the type of the data source

and its configuration in a JSON format a provided by the JSON object generated from the KPI

model component. The input is recognized by the module and returns a specific JSON with the

value returned by the service. Each data source module should implement the interface which

contains methods that will return the module type information and brief documentation

describing the function of each method in the java interface.

3.1.1. Dashboard Maven project for implementing the DataSource Wrapper

The Dashboard maven project source code for the deployment of the DataSource Wrapper is

provided in the ADOxx Web Dashboard github repository as an open source project.

(See this link to download: “https://github.com/ADOxx-org/KpiDashboard-Web”). Download

and import the project source code into preferably Eclipse IDE as an existing project.

3.1.1.1. Java Packages and constituent classes in the Dashboard project

The Dashboard project mainly contains five (5) packages in the “src/main/java” which has the

basic required classes to be able to deploy this project on a server.

https://github.com/ADOxx-org/KpiDashboard-Web

Figure 2. 4 Dashboard Project to be imported in Eclipse

i. Package org.adoxx.dashboard.datasource : contains the “DSWrapper” class which

gets all the information required from the available data source modules. Further details

on the class are given later in the document.

ii. Package org.adoxx.dashboard.datasource.modules : contains a java interface which

provides several methods required by DataSource modules. There exists description of

each method and its return value.

Interface’s abstract methods:

 getUniqueName(): returns the unique name of the component/datasource

 getDescription(): returns a JSON object containing a small description of the

module in different languages

 getConfigurationDescription(): return the configuration JSON required by the

module in order to work correctly. This JSON object must contain a JSON object

for each parameter needed to be configured and each parameter must contain a

JSON object for its description in different languages and a JSON string for

passing the value of the parameter (that in this method will be empty).

 obtainData(): This method calls the managed service using the provided

configuration and returns the service output in a structured way. The

configuration JSON as returned by the “getConfigurationDescription” method,

but with the value field set. Returns a JSON object representing a table of data

when possible, else a general output. In case of the table representation it must

containing an array that describe the data columns and an array with a JSON

object for each row.

 isDataStructured(): Returns true if the obtainData method return a JSON

representing a table, false when return a general output JSON

iii. Package org.adoxx.dashboard.datasource.modules.impl : this is an implementation

package where all the DataSource modules are configured. There is the possibility to

extend by adding new modules. The modules implements all the methods provided by the

“DSModuleI” interface and transforms the return value of the methods in a unique way

depending on the module. Available modules in the Dashboard project are DSMySQL,

DSExcel, DSMSSQLServer, DSRESTService, DSTripleStore and DSJsonFile. Details of

modules are described later in this document.

iv. Package org.adoxx.dashboard.datasource.rest : this mainly provides a REST Service

which implements the “DSWrapper” class as Web service providing paths to resources to

retrieve and manage some details of DataSource modules.

v. Package org.adoxx.dashboard.datasource.utils : contains a class which provides some

general functionality to the Web Service to upload a file to the server.

3.1.1.2. MySQL Module Implementation

This module is based on a MySQL database which will provide data to the wrapper; therefore it

is required to have an installation of the database to use this module.

The DSMySQL module contains methods as described above.

 getUniqueName(): this method has no argument but returns a string “mysql-

datasource”

 getDescription(): this method has no argument but returns a JSON object with

description of the module which could be in different languages.

 getConfigurationDescription():this method has no argument but returns the

configuration JSON required by the module in order to work correctly.

For this module, the JSON object returned contains parameters and its descriptions

required to connect to the MySQL database such as:

 host

 port

 database

 username

 password

 query

 obtainData (JsonObject configuration) : this method has the returned configuration

object from the above method as an argument. It then uses the parameters provided by the

configuration object to connect to the MySQL database and retrieves the selected fields.

The final return value for this method is JSON object in the format shown below but with

the corresponding values set.

{

 columns : ['value', 'instantTime', 'field3']

 data : [

 {

 value : '...',

 instantTime : '...',

 field3 : '...'

 },{

 value : '...',

 instantTime : '...',

 field3 : '...'

 },{

 value : '...',

 instantTime : '...',

 field3 : '...'

 }

]

}

 isDataStructured(): Returns “true” value since the “obtainData” method returned a

JSON representing a table.

3.1.1.3. MSSQL Server Module Implementation

This module is based on a MSSQL server which will provide data to the wrapper; therefore it is

required to have an installation of the database to use this module.

The DSMSSQLServer module contains methods as described above.

 getUniqueName(): this method has no argument but return a string “mssqlserver-

datasource”

 getDescription(): this method has no argument but returns a JSON object with

description of the module which could be in different languages.

 getConfigurationDescription():this method has no argument but returns the

configuration JSON required by the module in order to work correctly. For this module,

the JSON object contains parameters and its descriptions required to connect to the

MSSQL server such as:

 host

 port

 database

 username

 password

 query

 obtainData (JsonObject configuration) : this method has the returned configuration

object from the above method as an argument. It then uses the parameters provided by the

configuration object to connect to the MSSQL server and retrieves the selected fields.

The final return value for this method is JSON object in the format shown below but with

the corresponding values set.

{

 columns : ['value', 'instantTime', 'field3']

 data : [

 {

 value : '...',

 instantTime : '...',

 field3 : '...'

 },{

 value : '...',

 instantTime : '...',

 field3 : '...'

 },{

 value : '...',

 instantTime : '...',

 field3 : '...'

 }

]

 }

 isDataStructured(): Returns “true” value since the “obtainData” method returned a

JSON representing a table.

3.1.1.4. Excel Module Implementation

This module is based on Microsoft Excel sheets which will provide data to the wrapper;

therefore it is required to have an installation of the database to use this module.

The DSExcel module contains methods as described above.

 getUniqueName(): this method has no argument but return a string “excel-datasource”

 getDescription(): this method has no argument but returns a JSON object with

description of the module which could be in different languages.

 getConfigurationDescription(): this method has no argument but returns the

configuration JSON required by the module in order to work correctly. For this module,

the JSON object contains parameters and its descriptions required to connect to the

particular Excel sheet such as:

 filePath

 sheetNumber

 password (OPTIONAL)

 cellSeries (i.e. a comma “,” separated list or rage of columns/rows that represent

the set of cells where the series of data are described)

 cellValues (i.e. a comma “,” separated list or rage of columns/rows that represent

the set of cells that contain the data of the series)

 query

 obtainData (JsonObject configuration) : this method has the returned configuration

object from the above method as an argument. It then uses the parameters provided by the

configuration object to connect to the Excel sheet and retrieves the selected fields.

The final return value for this method is JSON object in the format shown below but with

the corresponding values set.

{

 columns : ['value', 'instantTime', 'field3']

 data : [

 {

 value : '...',

 instantTime : '...',

 field3 : '...'

 },{

 value : '...',

 instantTime : '...',

 field3 : '...'

 }

]

}

 isDataStructured(): Returns “true” value since the “obtainData” method returned a

JSON representing a table.

3.1.1.5. REST Service Module Implementation

This module is based on REST Service which will provide data to the wrapper; therefore it is

required to have an installation of the database to use this module. The DSRESTService module

contains methods as described above.

 getUniqueName(): this method has no argument but return a string “rest-datasource”

 getDescription(): this method has no argument but returns a JSON object with

description of the module which could be in different languages.

 getConfigurationDescription(): this method has no argument but returns the

configuration JSON required by the module in order to work correctly. For this module,

the JSON object contains parameters and its descriptions required to connect to the REST

service such as:

 endpoint

 method

 requestContentType

 querystring

 postData

 additionalHeaders

 obtainData (JsonObject configuration) : this method has the returned configuration

object from the above method as an argument. It then uses the parameters provided by the

configuration object to connect to the REST Service and retrieves the selected fields. The

final return value for this method is JSON object in the format shown below but with the

corresponding values set.

{

 dataFormat : 'application/xml',

data : '...'

}

 isDataStructured(): Returns “false” value since the “obtainData” method returned a

general output instead of JSON representing a table

3.1.1.6. TripleStore Module Implementation

This module is based on TripleStore which will provide data to the wrapper; therefore it is

required to have an installation of the database to use this module.

The DSTripleStore module contains methods as described above.

 getUniqueName(): this method has no argument but return a string “triplestore-

datasource”

 getDescription(): this method has no argument but returns a JSON object with

description of the module which could be in different languages.

 getConfigurationDescription(): this method has no argument but returns the

configuration JSON required by the module in order to work correctly. For this module,

the JSON object contains parameters and its descriptions required to connect to the

TripleStore such as:

 endpoint

 sparqlQuery

 obtainData (JsonObject configuration) : this method has the returned configuration

object from the above method as an argument. It then uses the parameters provided by the

configuration object to connect to the TripleStore and retrieves the selected fields. The

final return value for this method is JSON object in the format shown below but with the

corresponding values set.

{

 columns : ['value', 'instantTime', 'field3']

 data : [

 {

 value : '...',

 instantTime : '...',

 field3 : '...'

 },{

 value : '...',

 instantTime : '...',

 field3 : '...'

 }

]

}

 isDataStructured():Returns “true” value since the “obtainData” method returned a

JSON representing a table.

3.1.1.7. JsonFile Module Implementation

This module is based on JsonFile which will provide data to the wrapper; therefore it is required

to have an installation of the database to use this module. The DSJsonFile module contains

methods as described above.

 getUniqueName(): this method has no argument but return a string “json-datasource”

 getDescription(): this method has no argument but returns a JSON object with

description of the module which could be in different languages.

 getConfigurationDescription(): this method has no argument but returns the

configuration JSON required by the module in order to work correctly. For this module,

the JSON object contains parameters and its descriptions required to connect to the Json

file such as:

 path

 content

 obtainData (JsonObject configuration) : this method has the returned configuration

object from the above method as an argument. It then uses the parameters provided by the

configuration object to connect to the JsonFile and retrieves the selected fields. The final

return value for this method is JSON object in the format shown below but with the

corresponding values set.

{

 dataFormat : 'application/xml',

 data : '...'

 }

 isDataStructured(): Returns “true” value since the “obtainData” method returned a

JSON representing a table.

3.1.2. Detailed Description of DataSource Wrapper Class

In the implementation code of the DSWrapper class, initially a static moduleList object is created

with its return type as List with the DSModuleI interface as it argument as shown below:

 public static List<DSModuleI> moduleList = new ArrayList<DSModuleI>();

Subsequently, the DataSource modules created can be added to the above “moduleList” object as

shown below.

 moduleList.add(new DSJsonFile());
moduleList.add(new DSExcel());
moduleList.add(new DSMSSQLServer());
moduleList.add(new DSMySQL());
moduleList.add(new DSRESTService());
moduleList.add(new DSTripleStore());

DSWrapper contains two (2) main java methods namely the “getModules” and the

“callModule”. These methods perform some operation on the modules and return an output.

 getModules() : this method returns a JSON object containing the return values of all the

methods present in each of the modules added to the moduleList above.

 callModule(String moduleName, JsonObject moduleConfiguration) : this method

returns a JSON object and has the arguments of the name of the module and the module

configuration object. It checks if the module configuration JSON object has its key/value

pair set and subsequently get the actual data contained in the module specified.

3.1.3. Implementing the DataSource Wrapper as REST Web Service

The DataSource Wrapper is exposed through a web service with the “RESTService” class under

the “org.adoxx.dashboard.datasource.rest”. To explain how it works, the DataSource Wrapper

package is imported into the RESTService class in order to be able to call its methods. The

RESTService is annotated with the path “datasourceWrapper” to be added to the URI for

accessing the service. The web service provides two (2) relevant resources which are:

i. getModules() : this method gets all the modules from the DSWrapper and returns the

result as a string. It is annotated with a “GET” http request, a “/getModules” path and a

“Produces” annotation to set MediaType to JSON.

ii. executeModule() : this is POST method which takes the module name and the

configuration as its parameters and calls the DSWrapper method which returns the data

values from the specified module. The method is annotated with the path

“/executeModule” and it’s “Consumes” and “Produces” annotations are of media type

JSON.

3.2. The KPI Model

This is component is based on the ADOxx.org platform which allows for the definition of a

meta-model and the creation of an actual model to represent aspects of the KPI required by the

dashboard. In defining the meta-model, classes and their relations are created in the ADOxx

development platform as well respective attributes created.

3.2.1. ADOxx Experimentation Library as a default library

In order to have a KPI modeling language, we need to create a meta-model on the ADOxx

development environment. Here an installation of the ADOxx platform on your computer is

required to get started.

(See this link for installation support: https://www.adoxx.org/live/download-15)

 Assuming installation is complete or you already have ADOxx existing on your

computer, open the development toolkit and go to “Library Management”, “Libraries”

then “Settings”.

Figure 3. 1 Library Management settings

 At Library Management, select the dynamic library under the Experimentation library.

Then click on the “Class Hierarchy” and add the meta-model view to see classes in detail.

3.2.2. Defining Classes and Attributes for the KPI modeling language

Now we define classes, attributes and relations for the KPI modeling language. Below are the

details of the classes and associated definitions. (See this link for creating classes and attributes

respectively: “https://www.adoxx.org/live/create_modelling_class” and

“https://www.adoxx.org/live/create_string_attribute”).

https://www.adoxx.org/live/download-15
https://www.adoxx.org/live/create_modelling_class
https://www.adoxx.org/live/create_string_attribute

Define classes and attributes below following the provided links:

Figure 3. 2 Class Diagram of KPI Meta-Model

A. Classes with Attributes:

1. Datasource

o ds_type (attribute type: STRING)

o ds_config (attribute type: LONGSTRING)

o structuredOutput (attribute type: ENUMERATION)

o userRequiredInputFieldList (attribute type: STRING)

2. KPI

o Description (attribute type: LONGSTRING)

o fields (attribute type: STRING)

3. Goal

o Description (attribute type: LONGSTRING)

4. Algorithm

o Description (attribute type: LONGSTRING)

o Code (attribute type: LONGSTRING)

(See also this link for creating relation classes below:

“https://www.adoxx.org/live/create_relation_class”)

B. Relations:

o has_datasource (KPI-to-Datasource)

o depend_on_kpi (KPI-to-KPI)

o kpi_has_algorithm (KPI-to-Algorithm)

o evaluated_with_kpi (Goal-to-KPI)

o depend_on_goal (Goal-to-Goal)

o goal_has_algorithm (Goal-to-Goal)

https://www.adoxx.org/live/create_relation_class

3.2.3. Defining Graphical Representation for Classes and Notebook Attributes

We now create graphical representations for each of the classes and relation classes above. (See

this link: “https://www.adoxx.org/live/create_static_graphrep”). Give different graphical

representation for each of the classes and relation classes. For more details on example

graphReps go to: “https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-

/wiki/GRAPHREP+Repository/FrontPage”.

For the classes and relation classes to visible we need to define “attrRep” attributes by add all the

attributes created above to the Notebook. (Check this link to see attributes defined in the

Notebook: “https://www.adoxx.org/live/define_attrrep_attribute”).

3.2.4. Creating a Modeltype

We create a modeltype in the “Library Attributes” and add all the classes to the modeltype. (See

link on creation of modeltype, “https://www.adoxx.org/live/create_modeltype”) in this case use

the name “KPI Model” and change the classes included to conform with the classes and relations

created above.

Figure 3. 3 Creating a Modeltype and adding Library attributes

3.2.5. Creating a User to access the Modeling Toolkit

A user is required to be created in connection with the corresponding library in order to be able

to access the modeling toolkit. (See this link to create user:

“https://www.adoxx.org/live/create_user”).

3.2.6. ADOxx Modeling Toolkit Set up

Open the modeling toolkit and enter the user credentials created above (i.e. User name and

password) and click on “Model” at the top menu to create a new model (select the “KPI Model”

modeltype). All classes should be checked to confirm the attributes were defined correctly in the

Notebook.

A simple KPI model can be created as seen below:

https://www.adoxx.org/live/create_static_graphrep
https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-/wiki/GRAPHREP+Repository/FrontPage
https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-/wiki/GRAPHREP+Repository/FrontPage
https://www.adoxx.org/live/define_attrrep_attribute
https://www.adoxx.org/live/create_modeltype
https://www.adoxx.org/live/create_user

Figure 3. 4 Example of a KPI Model showing objects and their relations

Note: graphical representation of the Classes and relations could be different

3.2.7. AdoScript to retrieve Notebook Attribute values of the instances on a KPI model

The AdoScript language which adds functionality to models in ADOxx is used to retrieve all the

required attributes values from each of the instances or objects in the model. The aim of this is to

generate a JSON object in a format which required by the Web Dashboard service to work. The

JSON is interpreted by the Dashboard thereby allowing widgets on the Dashboard to get the right

values.

To bring this functionality to the model, a number of ADOxx Procedures (functions) are defined

and subsequently called to perform a function. The script file which allows for the JSON to be

generated can be accessed on the following github: “https://github.com/ADOxx-

org/KpiDashboard-MM/blob/master/src/scripts/KpiDashboardUtils.asc”.

Copy the script into a text editor (e.g. Notepad++) and save the name of the file as

“KpiDashboardUtils”. The script file contains two sets of “Procedures”, one is the set of

functions (“10 Procedures in all”) that retrieves all the needed attribute values of each object on

the KPI model and then transforms the output (into the Web Dashboard’s required JSON object)

and finally export the result. The second is the set of functions (“3 Procedures in all”) which (it

https://github.com/ADOxx-org/KpiDashboard-MM/blob/master/src/scripts/KpiDashboardUtils.asc
https://github.com/ADOxx-org/KpiDashboard-MM/blob/master/src/scripts/KpiDashboardUtils.asc

helps the DataSource object to connect to the DataSource Wrapper component) will be discussed

later.

3.2.8. Configuring “KpiDashboardUtils” in the ADOxx development toolkit

To be able to use the above script, import the file into development toolkit file management on

the menu bar (i.e. “Extras” -> “File Management” under corresponding library).

Now go to the “Library Management”, select the required Library under the “Settings” tab and

click on “Library attributes” -> “Add ons” -> “External coupling”. Here we create a script to

execute the “KpiDashboardUtils” file when a button on the top menu bar is clicked.

Copy and Paste the script for execution below into the text area for the External coupling and

click “Apply” then restart the modeling toolkit to view the button “Generate Web Dashboard

Json” under the menu “Extras”:

ON_EVENT "AppInitialized"
{
 EXECUTE file:("db:\\KpiDashboardUtils.asc")
}
ITEM "Generate Web Dashboard Json" acquisition:"Extras" modeling:"Extras" analysis:"Extras"
simulation:"Extras" evaluation:"Extras" importexport:"Extras"
EXPORT_KPI_MODEL_IN_JSON

3.2.9. The Dashboard Helper

This is a Java Maven project which aids the configuration of the DataSource and KPI objects in

the model. Its main function is to create a dialog boxes in order to set some parameters required

to connect to a particular data source or select fields the data provided by the data source in the

case of the KPI object.

There is a main class which executes each of the methods when the program is run. Available

source codes for the Dashboard Helper are provided here in the ADOxx Web Dashboard github

repository: “https://github.com/ADOxx-org/KpiDashboard-

MM/tree/master/src/additional_files/dashboard-helper_src”.

3.2.9.1. Methods in the Dashboard Helper

The Dashboard Helper contains a number of methods which is used to create JDialog boxes to

set parameters as mentioned earlier. All methods available to the helper read the final JSON

generated as a result of the different available modules of the data sources configured for the

dashboard. The content of this JSON is key/value pair of each of the required parameters for the

https://github.com/ADOxx-org/KpiDashboard-MM/tree/master/src/additional_files/dashboard-helper_src
https://github.com/ADOxx-org/KpiDashboard-MM/tree/master/src/additional_files/dashboard-helper_src

respective data sources present (i.e. key/value pair of parameters for Excel, MSSQLServer,

MySQL and other data source not discussed in this document). The methods for the helper are:

 chooseDatasourceType() : This method gets all the names and descriptions of the data

sources and presents it in a JDialog with the list of data source in a drop-down menu to be

selected by the user.

Figure 3. 5 Selecting a DataSource Type using the Dashboard Helper

 chooseDatasourceConfiguration() : this method retrieves the key “configuration” with

an object as its value for the any selected data source from the above method. It further

retrieves the all keys for the returned object which are the configuration parameters used

to connect to the particular data source. Then the dialog box to input the values into

parameters is called.

Figure 3. 6 Setting Configuration parameters for the selected DataSource type

 chooseDatasourceUserInputs() : this method simply creates a JDialog box to allow any

user input values to set if there exist. The user can enter a “key” (for instance, a

password) and a “description” of the key. This is required for instance, if an excel sheet is

password-protected and it will subsequently be configured on the Web Dashboard to be

entered any time data from the excel sheet accessed.

Figure 3. 7 Adding User Input

 chooseKPIFields() : this method is related to the KPI object in the KPI model and allows

fields from the provided data by the data source to be specified and retrieved.

Figure 3. 8 Adding KPI Fields to be retrieved

3.2.9.2. Configuring the Dashboard Helper with the KPI Model

Create additional attributes to the DataSource and KPI classes as shown in 3.2.2 above.

Attributes to add are:

Class Attribute Type

1. DataSource call_datasource_helper PROGRAMCALL

2. KPI call_dashboard_KPIFields PROGRAMCALL

a) In creating the attribute “call_datasource_helper” for the DataSource class, select Datasource

and create new attribute as shown below and click “Edit”.a

Figure 3. 9 Create New attribute for DataSource class

b) Set up the “call_datasource_helper” attribute as shown below:

Figure 3. 10 Setting a program call to procedure to execute the Dashboard Helper jar

c) Add the new attribute to the attrRep Notebook setting it as a button as shown below:

1)

6)

4)

3)

7)

2)

Figure 3. 11 Adding the new attribute to the DataSource “attrRep”

d) In the modeling toolkit, the datasource object now has the attribute showing and executes the

dashboard_helper jar when clicked.

Figure 3. 12 Button to execute Dashboard helper jar

 Repeat steps a) to c) above to create the second attribute “call_dashboard_KPIFields” for

the KPI class and set it up with the helper ADOxx procedure “KPI_HELPER” as depicted in

the diagram.

Figure 3. 13 Creating KPI attribute and setting program call to execute Helper jar

 The “Configure Fields” button allows for the “Fields” attribute to be set by triggering the

Dashboard Helper.

Figure 3. 14 Button to configure KPI Fields with the Dashboard Helper

4. ADOxx Training Sessions Dashboard Example

Here, we try to explain how the dashboard can be set up and deployed using an example of an

excel datasource with a sample ADOxx Training session data in order to visualize the data on the

dashboard using a few widgets.

4.1. Prerequisite Tools and source codes

i. Eclipse IDE with a web application server installed (e.g. JBoss Tomcat web server)

ii. ADOxx Development and Modeling environments

iii. Github repository source codes for this example Dashboard implementation provided at:

“https://github.com/ADOxx-org/KpiDashboard-MM”

4.2. Setting Up The Training Session Web Dashboard

4.2.1. ADOxx Environment Implementations

On the ADOxx Development Platform:

1. Import KPI library into the ADOxx development environment –

(“Library Management” -> “Libraries” -> “Management” -> “Click Import” ->

“browse to library file location of the KPI Library”). Download library at:

“https://github.com/ADOxx-org/KpiDashboard-

MM/blob/master/KPIDashboardLibrary.abl”

Figure 4. 1 ADOxx Library Management

a)

https://github.com/ADOxx-org/KpiDashboard-MM
https://github.com/ADOxx-org/KpiDashboard-MM/blob/master/KPIDashboardLibrary.abl
https://github.com/ADOxx-org/KpiDashboard-MM/blob/master/KPIDashboardLibrary.abl

Figure 4. 2 KPI Dashboard Library Import

2. Create new user for the imported library –

(Go to “User Management” - > “User List” -> “Add” -> enter Username and password

-> Click “User group” -> Double click “ADOxx” -> “OK”)

Figure 4. 3 Creating a New User and associate with the corresponding Library

b)

a)

b)

3. Import into the file management the AdoScript file “KPIDashboardUtils.asc” (i.e. script

to convert the KPI into a JSON representation required Web interface) –

(Go to “Extras” -> “File Management” -> “Import” -> browse to file location and

import)

Figure 4. 4 File management for adding files to ADOxx database

4. Copy the following AdoScript code (which helps to execute script which contains procedures)

into the library attributes 'Add ons': -

 (Go to “Library Management” -> “Settings” -> select the library -> click “Library attributes” -

> then click “Add-ons”)

ON_EVENT "AppInitialized"

{

 EXECUTE file:("db:\\KpiDashboardUtils.asc")

}

ITEM "Generate Web Dashboard Json" acquisition:"Extras" modeling:"Extras" analysis:"Extras"

simulation:"Extras" evaluation:"Extras" importexport:"Extras"

EXPORT_KPI_MODEL_IN_JSON

a)

b)

Figure 4. 5 ADOxx External coupling to execute AdoScript file

On the ADOxx Modeling Toolkit:

5. Open the modeling environment the new user credentials

6. Import the “TrainingDaysKPIModel.adl” file provided (this contains a predefined KPI

model) – (Go to “Import/Export” -> “Model” -> “ADL Import” -> “Models/Attribute

profile”)

Figure 4. 6 KPI Model Import

4.2.1.1. ADOxx Training Session KPI Model

The “TrainingDays-KPI” model comprises of two distinct KPI models on one modeling area.

Below are the screenshots of the models:

 2 Goals, 3 KPI, 1 Datasource and 4 Algorithm objects for excel sheet 2

Figure 4. 7 KPI Model for the second Excel sheet available in the DataSource

 1 Goals, 2 KPI, 1 Datasource and 3 Algorithm objects for Excel sheet 1

Figure 4. 8 KPI Model for the first Excel sheet available in the DataSource

4.3. Description of objects and relevant attribute values of the Training Session KPI model

The KPI model evaluates some data from the participants of the training usually organized by the

ADOxx.org team. The data is Excel sheet provided by the DataSource wrapper with information

about number of participants per training in a particular year and details of each participant.

In the first part the model consists of 2 Goals, 3 KPI, 1 Datasource and 4 Algorithm objects

which have Notebook attributes of the classes.

Let’s now review the attributes set for each one of the instances of the classes.

a) DataSource “Excel sheet 2”

i. Double click on the object representation

Figure 4. 9 DataSource object configured to select sheet 2 of the Excel data

ii. Click on “Configure Fields” to call the java helper class which allows the attribute

values to be set

Figure 4. 10 Trigger the Dashboard Helper to configure DataSource object

iii. “Dashboard REST Endpoint” is set with “ http://127.0.0.1:8080/dashboard/rest” ->

Click “Ok”

Figure 4. 11 Setting Dashboard REST Endpoint

iv. Select “excel-datasource” -> Click “Ok”

Figure 4. 12 Selecting a DataSource type

http://127.0.0.1:8080/dashboard/rest

v. Configuration parameters to connect and extract data from excel sheet are set as

shown below -> Click “Ok”

Figure 4. 13 Configurations Parameters required for connecting and retrieving data

vi. User Inputs (OPTIONAL); for example, excel password or user email, etc. -> Click

“Ok” to finish

Figure 4. 14 Setting User Inputs (OPTIONAL)

Note: Datasource attributes will be set as shown below:

Figure 4. 15 DataSource object with Excel sheet configuration parameters

b) The 3 KPI Objects must be configured as shown below (from bottom up)

KPI 1 (Single session attendance)

Figure 4. 16 Single Session Attendance KPI

Figure 4. 17 Configuring Single Session Attendance KPI

Double Click on the KPI object to view attributes with

preset entries

This KPI connects to the excel sheet and gets the required fields specified in

the “Fields” attribute by clicking the “ Configure Fields” button with aid of a

java helper class.

This KPI provides information on the number of participants for each ADOxx

Training session.

KPI 2 (Yearly attendance)

Figure 4. 18 Yearly Attendance KPI

Figure 4. 19 Configuring Yearly Attendance KPI

This KPI is generated by the Algorithm “Group by year” and gets the required fields

specified in the “Fields” attribute by clicking the “Configure Fields” button with the

helper class.

This KPI provides information on the number of participants for a particular year.

KPI 3 (Average yearly attendance)

Figure 4. 20 Average Yearly Attendance KPI

Figure 4. 21 Configuring Average Yearly Attendance KPI

Note: Repeat steps 1), 2), and 3) of “KPI1” above to

set up this KPI object with values as shown in the

fields below

This KPI is generated by the Algorithm “Group by year” and gets the required fields

specified in the “Fields” attribute by clicking the “Configure Fields” button with the

helper class.

This KPI provides information on the number of participants for a particular year.

c) The 5 Algorithm objects configuration is described as follows:

Algorithm 1 (Group by year)

Figure 4. 22 Group by Year Algorithm

Figure 4. 23 Configuration of Group by Year Algorithm

This algorithm reads the number of participants per

single session and groups them according to the years.

The fields consist of the description and a JavaScript

code to perform the grouping and provide the result to

the connected KPI.

Algorithm 2 (Calculate average)

Figure 4. 24 Calculate Average Algorithm

Figure 4. 25 Configuring Calculate Average Algorithm

Note:

The rest of the 3 Algorithms follows the above set ups and can be viewed by double-clicking the

object on the model.

This algorithm calculates the average attendance over all the

years.

The fields consist of the description and a JavaScript code to

perform the grouping and provide the result to the

connected KPI.

d) There are 3 Goals to be evaluated in the upper KPI model which required only a goal

description to be set usually in a question form.

Figure 4. 26 Goals to be evaluated

e) The second part of the KPI model consists of 1 Goal, 2 KPI, 3 Algorithms and 1 Excel Data

source as depicted in the diagram below.

In this scenario, the Excel is assumed to be password protected therefore the

“userRequiredInputFieldList” value is set with a password variable.

Figure 4. 27 KPI Model for Excel sheet 1

f) Now the required JSON file to be provided to the Web Dashboard can be generated and

exported. Do this by:

 Click “Extras” on the menu bar Click “Generate Web Dashboard JSON”

Figure 4. 28 Triggering the AdoScript to Generate the model JSON

 Select the model to be exported Browse to a location to save exported file

Figure 4. 29 Exporting the generated model JSON

4.2.2. Importing the Dashboard war into Eclipse IDE

1. Import of the Dashboard war file and create new Dashboard project in eclipse.

 Go to “File” -> Click “Import” -> Locate and select “war file” in the wizard

 Browse and Select the Web dashboard war file.

 Give the project a name, select a runtime environment and click “Finish”

Figure 4. 30 Eclipse IDE import of the Dashboard war file

2. Install an Application Server (if not present) and deploy the project on the server

Figure 4. 31 Deploying Dashboard project on Tomcat Application

a) b)

4.1.3. Configuration and Visualization of the KPI model Result

I. Web Dashboard JSON model import and visualize KPI widgets

1. With the dashboard project deployed on the Tomcat application server as shown above,

enter the url : “http://127.0.0.1:8080/dashboard/dashboard.html#” in your web browser to

view the home page.

Figure 4. 32 Web Dashboard User interface

2. Click the highlighted button at the top right corner to locate and import KPI model export

file

Figure 4. 33 Uploading model Export file on to the Dashboard to visualize KPIs

3. There 3 widgets are provided as shown below. Select any widget to configure and

visualize the KPI information as given by the model.

Figure 4. 34 Dashboard widgets

a) b)

http://127.0.0.1:8080/dashboard/dashboard.html

High-level visualization of the dashboard for monitoring and comprehend the data provided

below:

Figure 4. 35 Dashboard Overview of the ADOxx Training Sessions Data

5. Conclusions and Plans for Future Work

This document has provided a detailed description and documentation of the development of the

KPI Web Dashboard for monitoring the achievement or otherwise of specific KPIs and goals

defined by businesses or organizations. This KPI Dashboard ensures that organizations make

well-informed, faster and accurate decisions.

The initial prototype described in this document is limited in scope because it does not explain

any detail implementation of how the Dashboard web interface was developed and as well more

widgets such as line graph, tachometers, bar charts, etc. can be added to visualize complex data.

This can be done by to improve upon this deliverable in order help better understand how the

web interface of the Dashboard was developed and as well widen the scope of visualization.

Also, improvement of the DataSource Wrapper by implementation some advanced data sources

such as Oracle, NoSQL databases and other cloud-provided databases can be done also with the

aim of widening the scope.

References

[1] ADOxx documentation, available at: https://www.adoxx.org/live/adoxx-documentation

 [2] Learn PAd Project Team. D6.2: Learn PAd Simulation Environment: Refined

Architecture and Prototype Implementation

