ADOxx KPI WEB DASHBOARD:
Documentation on Architecture and
First Prototype

A

O ——

L] AB® X
Www.bocgroup.com ADOX

8l Frasmus+

Project Title : KPI Web Dashboard for monitoring specific KPIs and Goals

Deliverable : D1.0

Type of Deliverable : DataSource Wrapper and KP1 Model:
Architecture and Prototype Implementation

Nature of Deliverable : Documentation on Implementation of Project

Dissemination Level : Public

Delivery Date : June 30, 2017

Name of student : Frederick Dodzi Agbleke

Author(s) : Frederick Dodzi Agbleke, Damiano Falcioni

Reviewer(s) : Robert Woitsch, Barbara Re

Organization : BOC Asset Management (Research & Development)

Associated University : University of Camerino

Type of University Program : Erasmus+ Traineeship 2016/2017

Abstract

A Key Performance Indicator (KPI) is a measurable value that demonstrates how effectively an
organization is achieving key business objectives. Organizations use KPIs to evaluate their success at
reaching targets.

D1.0 is the first deliverable of documentation KP1 Web Dashboard project which is based on the
ADOxx meta-modeling environment. This document describes the architecture of some components
of the dashboard and as well the implementation of an initial prototype.

In the prototype part of this deliverable, the delivered code is briefly described. We start by detailing a
step-by-step process on how to set up (i.e. the DataSource wrapper and KPI model parts of the web
dashboard excluding the implementation of the Dashboard Web interface) by get the source codes,
build and run the dashboard. It also describes how the dashboard can be used with an example data
source (i.e. excel sheet).

Keyword list

KP1 Web Dashboard, KP1 Model, Datasource Wrapper, Data source, KPI, Goal, Algorithm, Web
service, Web dashboard interface

Glossary, acronyms & abbreviations

KPI Key Performance Indicator
JSON JavaScript Object Notation
REST Representational State Transfers
URI Uniform Resource Identifier
HTTP HyperText Transfer Protocol
graphRep Graphical Representation
attrRep Attribute Representation
NoSQL Not Only SQL

MSSQL Server Microsoft SQL Server

I g} ¥ (o o LU 11 Ao o TR TR RTTTTTRTTRRTRTRT 6

1.1. Deliverable ODJECLIVESoiiiiece ettt 9
1.2. DeliVerable OULIINGcvoiviiiiiieiceee bbbt 9
2. KP1 Model and the DataSource Wrapper COMPONENTtSccevceereereereereeieeseeseeseesee e 10
2.1. KPI Dashboard General ArChItECIUIEcccuviiieiiiiieie e 10
2.1.1. COMPONENT DIAGIAMviivieieeiiecieesie ettt e e st et et e sae e te e esteenteaneesneenns 10
2.1.2. SEQUENCE DIAQIAM......iiiiiicie ettt te et e st e et e s re e te e e s e e naeeneenneenrs 11
3. Development of the KPI Dashboard COmMPONENTS........cccceviiiiieiie e siee e 13
3.1. The DataSource Wrapper OVEIVIEWc.ccveieieeiieaieieesieeeeseesteessesieesseeeesseesseessesneesnas 13
3.1.1. Dashboard Maven project for implementing the DataSource Wrapper 13
3.1.1.1. Java Packages and constituent classes in the Dashboard project...............c......... 13
3.1.1.2. MySQL Module Implementation............ccccceeieiieiieie e 15
3.1.1.3. MSSQLServer Module Implementation ... 16
3.1.1.4. Excel Module Implementation............cocoiiiirieieieiese e 17
3.1.1.5. REST Service Module Implementation ..o 18
3.1.1.6. TripleStore Module Implementation............cocooeiiiiiiiiieneee e 19
3.1.1.7. JsonFile Module Implementation ..o 20
3.1.2. Detailed Description of DataSource Wrapper Classccoeririnieienenenese e 21
3.1.3. Implementing the DataSource Wrapper as REST Web Service..........cccocveviienennnne 21
3.2. ThE KPIIMOGELottt neeeneenns 22
3.2.1. ADOxx Experimentation Library as a default libraryccoooviiiinnii 22
3.2.2. Defining Classes and Attributes for the KP1 modeling language..........ccccocevvieniennne 22
3.2.3. Defining Graphical Representation for Classes and Notebook Attributes.................. 24
3.2.5. Creating a User to access the Modeling TooIKit.............ccocveviiiiiiiic i 24
3.2.7. AdoScript to retrieve Notebook Attribute values of the instances on a KPI model.... 25
3.2.8. Configuring “KpiDashboardUtils” in the ADOxx development toolKit 26
3.2.9. The Dashboard Helper...........ooioiiice e 26
3.2.9.1. Methods in the Dashboard Helper ..o 26
3.2.9.2. Configuring the Dashboard Helper with the KP1 Modelccccccveiieiiieiinnne 28

4. ADOxx Training Sessions Dashboard EXample ..., 33

4.1. Prerequisite TOOIS and SOUICE COUBSoieiruiiieiieiieie sttt 33

4.2. Setting Up The Training Session Web Dashboard ... 33
4.2.1. ADOxx Environment Implementations.............ccoveieieieieneiiniseeeee e 33
4.2.1.1. ADOxx Training Session KPI Model ... 37

4.3. Description of objects and relevant attribute values of the Training Session KPI model.. 38
4.2.2. Importing the Dashboard war into EClipse IDEcccoiiiiiiiniiieceec e 49
4.1.3. Configuration and Visualization of the KPI model Result..............cccoovevviieiieviecnnenn, 50

5. Conclusions and Plans for FUTUIe WOKK ... 52

R I EINCES ... et e e e ettt e e e e e e e e e et eee e e e e e e aeeeeeaeaae——————aaans 53

List of Figures

Figure 2.
Figure 2.
Figure 2.
Figure 2.

Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.
Figure 3.

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

1 KPI Dashboard Conceptualized SrUCTUIEccveieirirenieierieeeeeeesere s 8
2 KPI Dashboard Component DIagram..........ccceoveerirenenienenienieieeeieesesre st see s 11
3 KPI Dashboard SequeNnCe DIagramcc.cveiueecieieeeeiieieetesieseere e eaestesreebe e re e snessesreennas 12
4 Dashboard Project to be imported in ECHIPSEcc.oveveieiieieeeeeeeeeeeeee e 14
1 Library Management SEIINGSc..oveererirerierieiee ettt neen 22
2 Class Diagram of KPI Meta-MOdElceoouiiuieiiiicieeceees ettt 23
3 Creating a Modeltype and adding Library attribDUteSccceoeeererininenereeeeecee e 24
4 Example of a KPI Model showing objects and their relations.........ccceeevcieiiiiiiiiiicieec e, 25
5 Selecting a DataSource Type using the Dashboard Helper.........ccueeeieciieiiccieee e 27
6 Setting Configuration parameters for the selected DataSource typeccoccceeeeeeevvcvvveeeeeeeeenn. 27
7 AUAING USEE INPUL ...ttt ettt st sttt et ese b e nes 28
8 Adding KPI Fields t0 be retrieVEd........cceeviiieieieceeeeee ettt 28
9 Create New attribute for DataSoUrCe ClaSS..........ceeerireerierieiieieireeserereeee e 29
10 Setting a program call to procedure to execute the Dashboard Helper jarc...cccoeuvvneee.n. 29
11 Adding the new attribute to the DataSource “attrRep”ccooeeriiriiiiiinienicnceeeeeeee 30
12 Button to execute Dashboard NEIPEr Jar..........ccevrieirirerenereeee e 30
13 Creating KPI attribute and setting program call to execute Helper jar.........cccocevevvevenieennnns 31
14 Button to configure KPI Fields with the Dashboard Helper..........ccoovveeevieiieeveiiececees 32
1 ADOXX Library ManagemeNt...........ccceceeeieriereenieseeiestieeessesteessessesseessesseessessesseessessesssessessenns 33
2 KPI Dashboard Library IMpPOrt..........ccoooioieiieiceceeee ettt sttt et st 34
3 Creating a New User and associate with the corresponding Library.........ccccccovevvevieeveeviennenen. 34
4 File management for adding files to ADOXX database.........ccveevevireeveniecierereeceseeeee e 35
5 ADOxx External coupling to execute AdOSCHIPt filecovviiveieiiieeececee e, 36
6 KPI MOGEI IMPOIT ...ttt ettt et et e s be b e sbeesa e beeaeensesreennas 36
7 KPI Model for the second Excel sheet available in the DataSourcec..coceeeveeerenenereenne. 37
8 KPI Model for the first Excel sheet available in the DataSourcec.ccoceveveveceecceenenennenn 38
9 DataSource object configured to select sheet 2 of the Excel datacccceeeevveviececeeniennenen. 39
10 Trigger the Dashboard Helper to configure DataSource Objectcccoevvevvevveceeveveececeens 39
11 Setting Dashboard REST ENAPOINTcccoiiiieiiieeeieeeee et 39
12 Selecting @ DAtaSOUICE TYPB ...cccuieueeierieeieie e ste sttt ettt ettt et e eesateste s e et e be s e eneesaeeeeseesnnans 39
13 Configurations Parameters required for connecting and retrieving data...........cccceceveevenennne 40
14 Setting User INPUtS (OPTIONAL) ..ottt ettt ettt saeseeennens 40
15 DataSource object with Excel sheet configuration parametersccoceeereevenenceseneennns 41
16 Single Session AeNdanCe KPl ..ottt ee e eesre e e resnnens 42
17 Configuring Single Session Attendance KP.........cocooiiioiiieiereeeeeeeeee e 42
18 Yearly AtteNTANCE KPl.......ocieeeeeecee ettt te et e e s a e s eete e te e teesenesrneens 43
19 Configuring Yearly Attendance KPlcooioiiieieiceeeseeee et 43

Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.
Figure 4.

20 Average Yearly Attendance KPIt 44
21 Configuring Average Yearly Attendance KPl..........ccoovoieviiieiiiieiese e 44
22 Group by Year AIGOIthM.........oovoiieeceeee e 45
23 Configuration of Group by Year AlQOrithmcccooiviiiiiiiieinerereeeee e 45
24 Calculate Average AlGOTtNMcccviiiiiieiceceeee et 46
25 Configuring Calculate Average AlGOrithmccooovieieiiiececeeeee e 46
26 G0alS t0 DE BVAIUALEM.eeeeeeieieeieeee ettt et 47
27 KP1 Model TOr EXCEI SNEEL L ..ottt st 47
28 Triggering the AdoScript to Generate the model JSONcccovieieveieececeee e, 48
29 Exporting the generated Model JSON ..ot 48
30 Eclipse IDE import of the Dashboard war filec.ccoeveiieieniiieeeeee e, 49
31 Deploying Dashboard project on Tomcat AppliCationcccecvvevirirenenineeeeeee e 49
32 Web Dashboard USer INTEITACE........ccvevererieereceee ettt enees 50
33 Uploading model Export file on to the Dashboard to visualize KPIs.........cc.ccccoevievevvennennen. 50
34 DashDOArd WIQELSc..ccveeeuiririireriertee ettt 50

35 Dashboard Overview of the ADOXx Training Sessions Dataccccvevevverveieereeeneniennenne 51

1. Introduction

The main objective of this project is to provide a KPI (Key Performance Indicator) Web
Dashboard in order create a visualization of data from organizations and monitor performance
through the achievement or otherwise of defined objectives and targets according to the overall
business goals. A KPI Dashboard enables businesses to create, manage and analyze data from
KPIs. This KPI dashboard implementation supports the utilization of data from various data
sources which will be managed by DataSource Wrapper with the necessary connection
parameters set right to aid to retrieval of data. This document looks at how data sources such as
Excel, MSSQLServer, MySQL, TripleStore, REST service and from a JSON file were created
and added to the DataSource Wrapper. The Wrapper has an extensible characteristic which
provides possibility for new data sources such as Microsoft Access, BigData, NoSQL databases,
etc to be added.

algorithm

Widget

algorithm ; . -- = manager.]j

Overview Widget.js

Pie Chart Widget.js
Line Widget.js

algorithm

data
source

Instagram Widget.js

data
source

Dashboard Core.js

EXCEL
Interface

sQL SPARQL
Interface | Interface

A _

Figure 2. 1 KPI Dashboard Conceptualized Structure

The first part deals with a detailed explanation of the Data source Wrapper which serves as a
data access layer is created from scratch.

The second part of the document explains how the project shows how the ADOxx modeling
environment helps the user to model all aspects of a KP1 where data provided by the model will

be evaluated based on some KPI values in order to assess the performance and achievement or
otherwise of particular goals. The document attempts to explain how classes, attributes and their
relations are created in the ADOxx development environment and with the help of AdoScript
code (scripting language for ADOxx meta-model platform) created to give some functionality to
the KPI model.

This part also explains how DataSource Wrapper (which is a Java component) provides data
depending on which fields are required to provide a KPI value. The data source is selected by
using connection parameters set in the KPI Model provided by the user for the particular data
source to be used. This will aid students or developers who desire to build this dashboard project
and subsequently improve on it to a fair idea how to start. It will actually provide a basis for
future development in this area of KPI Dashboard development allowing them have more
exposure with the ADOxx meta-modeling environment in addition.

1.1. Deliverable objectives

This document provides documentation and a prototype which will serve as basis for students
and developers to understand how components of the KPI Dashboard are created. It intends to
give start to further developments by interested developers who wish to work on projects with
regards to organization KPI monitoring. It covers:

e A technical documentation for both the Data source Wrapper and the KPI Model
e A first implementation of the components of the KPI Dashboard and how they all work
together to provide a first implementation of a working system.

1.2. Deliverable Outline
This document provides a detailed documentation and implementation of the KPI Dashboard and
its component. It is divided into five (5) chapters with described as follows:

e Chapter 2 describes the methodology and the supporting tools that were used to create the
various components of the KPI Web Dashboard. In particular, depicting the architectural
framework, the functionalities and interactions of the individual components and sub-
components.

e Chapter 3 attempts to give detailed description of how each component is created from
scratch with particular focus on the KP1 Model and the DataSource Wrapper components. It
goes ahead to show how an example working Dashboard is created, with downloads of
source codes, libraries and other files needed to build and run the system to give a better
understanding of how the components work together to generate a final result on the
dashboard.

e Chapter 4 introduces an implementation manual to assist users and developers to get the first
example implementation of the KP1 Web Dashboard.

e Finally, Chapter 5 concludes the deliverable, with a summary of its usefulness and
contributions as well as outlines for future works and improvements.

2. KP1 Model and the DataSource Wrapper Components

The main Web Dashboard interface which visualizes the data works in tandem with the KPI
model. The model also connects to a data source through a web service call. Therefore it is
important to have a technical understanding of these components and interactions between these
components.

This chapter introduces an architectural overview of the above mentioned components while
going into details where needed and also briefly describing the functionality of each component.

2.1. KPI Dashboard General Architecture

The architecture of the dashboard is composed of three (3) main components as already
described above. It is made up the KPI model, the Data Wrapper and Web dashboard service
including the interactions through the interfaces of these components. We use:

i. A component diagram which describes the organization of physical software components
in the system and the interfaces with which these individual components interact.

ii. A sequence diagram and Use Case diagram to describe the flow of logic in a visual
manner showing the behavior of the system.

2.1.1. Component Diagram

This systems architecture-level artifact depicts the high-level view of the software components
and more importantly the interfaces to these components. This view helps in understanding how
best the system can be organized especially during the development stage. The diagram shows
the three main component interfacing with each other:

= The ADOxx environment component is also composed of two (2) sub-components (i.e. the
development and modeling platform interacting to provide a basis for modeling KPIs).

= The KPI modeling components interfaces with the DataSource Wrapper by allowing
connection to a selected data source to get data and use the data to provide relevant KPIs
through evaluation algorithms. The diagram focuses on three (3) data sources configured in
the DataSource wrapper. Other additional data source configuration will be provided later in
this document.

= The web dashboard gets the output from the KPI model and generates a simple cockpit
displaying different assessment of goals and KPIs. This document does not focus on the
development of the Web Dashboard in detail since it is not part of the deliverables.

The figure below depicts the software components of the KP1 Web Dashboard as described
above:

ADOxx Environment E’

Dashboard D

Component

Datasource L |

Wrapper Service

Development
environment for KPI

Meta-Model ()

ashboard
Interface

/Veb Dashboard
Service

MysaL

1
1
|
lsess
1
1
1
1

MSSQLServer

IModeling Environment
for KPI Model

Dashboard Core

Excel \(O/

DataSource
Parsing
Interface

[

Figure 2. 2 KPI Dashboard Component Diagram

2.1.2. Sequence Diagram

The sequence diagram below describes the interaction among components of the KPI Web
Dashboard in terms of an exchange of messages or data showing communication between the
components over time. It shows in a visual manner runtime scenarios of the system as a user
goes through the various stages of deploying a running dashboard.

The diagram below depicts the deployment of the various components of system in order to
regenerate an already developed dashboard. It shows the flow of events through the components,
the communication flow which in the show the results to the user.

Dashboard
Service

B
- z
.wﬂ_ [+ I CEEEEEEEREE
m_wm 3 | g _
o I g -
_ # g% |
_ o 8
Sal
| 28!
i
£3 1 a5l
28 A "o
g mm_ _
2% |
vl _
2 B -] ki1
ai | a4, i
| in m I
_ i i 2 |
T _ o ¥ i
g | \/p ﬂJ “
2 v ¥ ' “
b I o I |
8 |
[=]
: |
o]
B I
%)
E I
a i
n I
i |
o I
o i
i
i
N W
|
=

Figure 2. 3 KPI Dashboard Sequence Diagram

3. Development of the KP1 Dashboard Components

This document pays particular focus on two (2) main components which are the DataSource
Worapper and the KP1 Model components. The DataSource Wrapper is a Java component which
IS exposed as service that allows several data source modules to be created and added to it. Far
different from that, the KPI Model is created based on ADOxx meta-modeling platform. This
platform provides to the user the possibility to develop individual and domain-specific graphical
modeling language, by developing your syntax, semantic and graphical notation for your
modeling concepts.

3.1. The DataSource Wrapper Overview

The DataSource wrapper is a Java component that contains several modules used to get data
from the different type of data source. It contains implementation modules for various data
sources which are exposed through a java interface.

The general idea of the DataSource Wrapper is that, it gets as input the type of the data source
and its configuration in a JSON format a provided by the JSON object generated from the KPI
model component. The input is recognized by the module and returns a specific JSON with the
value returned by the service. Each data source module should implement the interface which
contains methods that will return the module type information and brief documentation
describing the function of each method in the java interface.

3.1.1. Dashboard Maven project for implementing the DataSource Wrapper
The Dashboard maven project source code for the deployment of the DataSource Wrapper is
provided in the ADOxx Web Dashboard github repository as an open source project.

(See this link to download: “https://github.com/ADOxx-org/KpiDashboard-Web”). Download
and import the project source code into preferably Eclipse IDE as an existing project.

3.1.1.1. Java Packages and constituent classes in the Dashboard project
The Dashboard project mainly contains five (5) packages in the “src/main/java” which has the
basic required classes to be able to deploy this project on a server.

https://github.com/ADOxx-org/KpiDashboard-Web

4 "= dashboard

. A JAK-WS Web Services
- ‘a1 Deployment Descriptor dashboard
[= Referenced Types
4 T Java Resources
a [sre/main/java

. 1 org.adowcdashboard.datasource
. 4 org.adowcdashboard.datasource.mogules
. H3 org.admecdashboard.datasource.mogdules.impl
. #} org.admecdashboard.datasource.rest
. f# org.adoecdashboard.datasource,utils
. [src/main/resources
[

src/test/java
. [sreftest/resources
. =, Libraries
. B, JavaScript Resources
. Lg Deployed Resources
s sre
. [= target
=| LICEMSE
[pom.sml
[#| README.md

Figure 2. 4 Dashboard Project to be imported in Eclipse

Package org.adoxx.dashboard.datasource : contains the “DSWrapper” class which
gets all the information required from the available data source modules. Further details
on the class are given later in the document.

Package org.adoxx.dashboard.datasource.modules : contains a java interface which
provides several methods required by DataSource modules. There exists description of
each method and its return value.

Interface’s abstract methods:

e getUnigueName(): returns the unique name of the component/datasource

e getDescription(): returns a JSON object containing a small description of the
module in different languages

e getConfigurationDescription(): return the configuration JSON required by the
module in order to work correctly. This JSON object must contain a JSON object
for each parameter needed to be configured and each parameter must contain a
JSON object for its description in different languages and a JSON string for
passing the value of the parameter (that in this method will be empty).

e obtainData(): This method calls the managed service using the provided
configuration and returns the service output in a structured way. The
configuration JSON as returned by the “getConfigurationDescription” method,

but with the value field set. Returns a JSON object representing a table of data
when possible, else a general output. In case of the table representation it must
containing an array that describe the data columns and an array with a JSON
object for each row.

e isDataStructured(): Returns true if the obtainData method return a JSON
representing a table, false when return a general output JSON

Package org.adoxx.dashboard.datasource.modules.impl : this is an implementation
package where all the DataSource modules are configured. There is the possibility to
extend by adding new modules. The modules implements all the methods provided by the
“DSModulel” interface and transforms the return value of the methods in a unique way
depending on the module. Available modules in the Dashboard project are DSMySQL,
DSExcel, DSMSSQLServer, DSRESTService, DSTripleStore and DSJsonFile. Details of
modules are described later in this document.

Package org.adoxx.dashboard.datasource.rest : this mainly provides a REST Service
which implements the “DSWrapper” class as Web service providing paths to resources to
retrieve and manage some details of DataSource modules.

Package org.adoxx.dashboard.datasource.utils : contains a class which provides some
general functionality to the Web Service to upload a file to the server.

3.1.1.2. MySQL Module Implementation
This module is based on a MySQL database which will provide data to the wrapper; therefore it
is required to have an installation of the database to use this module.

The DSMySQL module contains methods as described above.

getUniqueName(): this method has no argument but returns a string “mysql-
datasource”

getDescription(): this method has no argument but returns a JSON object with
description of the module which could be in different languages.
getConfigurationDescription():this method has no argument but returns the
configuration JSON required by the module in order to work correctly.

For this module, the JSON object returned contains parameters and its descriptions
required to connect to the MySQL database such as:

= host

= port

= (atabase
= username
= password

= query

e obtainData (JsonObject configuration) : this method has the returned configuration
object from the above method as an argument. It then uses the parameters provided by the
configuration object to connect to the MySQL database and retrieves the selected fields.
The final return value for this method is JSON object in the format shown below but with
the corresponding values set.

{

columns : ['value', 'instantTime', ‘field37]
data: [

{

value : ...,
instantTime : "...,
field3 :"..'

H
value : ...,
instantTime : "...",
field3: .

H
value : ...,
instantTime : "...",
field3: .

}
]
}
e isDataStructured(): Returns “true” value since the “obtainData” method returned a
JSON representing a table.

3.1.1.3. MSSQL Server Module Implementation
This module is based on a MSSQL server which will provide data to the wrapper; therefore it is
required to have an installation of the database to use this module.

The DSMSSQLServer module contains methods as described above.

e getUnigueName(): this method has no argument but return a string “mssqglserver-
datasource”

e getDescription(): this method has no argument but returns a JSON object with
description of the module which could be in different languages.

e getConfigurationDescription():this method has no argument but returns the
configuration JSON required by the module in order to work correctly. For this module,
the JSON object contains parameters and its descriptions required to connect to the

MSSQL server such as:
= host
= port

= database

= username
= password
= query
e obtainData (JsonObject configuration) : this method has the returned configuration
object from the above method as an argument. It then uses the parameters provided by the
configuration object to connect to the MSSQL server and retrieves the selected fields.
The final return value for this method is JSON object in the format shown below but with
the corresponding values set.

{

columns : ['value', 'instantTime', ‘field3']
data: [

{

value : '...",
instantTime : "...",
field3 :"..."

1Al

value : '...",
instantTime : "...",
field3 :".."

X
value : ...
instantTime : "...",
field3: ..

¥
]
¥

e isDataStructured(): Returns “true” value since the “obtainData” method returned a
JSON representing a table.

3.1.1.4. Excel Module Implementation
This module is based on Microsoft Excel sheets which will provide data to the wrapper;
therefore it is required to have an installation of the database to use this module.

The DSExcel module contains methods as described above.

e getUnigueName(): this method has no argument but return a string “excel-datasource”

e getDescription(): this method has no argument but returns a JSON object with
description of the module which could be in different languages.

e getConfigurationDescription(): this method has no argument but returns the
configuration JSON required by the module in order to work correctly. For this module,
the JSON object contains parameters and its descriptions required to connect to the
particular Excel sheet such as:

= filePath

= sheetNumber
= password (OPTIONAL)
= cellSeries (i.e. a comma “,” separated list or rage of columns/rows that represent
the set of cells where the series of data are described)
= cellValues (i.e. acomma “,” separated list or rage of columns/rows that represent
the set of cells that contain the data of the series)
= query
obtainData (JsonObject configuration) : this method has the returned configuration
object from the above method as an argument. It then uses the parameters provided by the
configuration object to connect to the Excel sheet and retrieves the selected fields.
The final return value for this method is JSON object in the format shown below but with
the corresponding values set.

{

columns : ['value', 'instantTime', ‘field3']
data: [
{
value : ...,
instantTime : "...",
field3 :".."
j A1
value : ...,
instantTime : ...,
field3:"..."

¥
]
¥
isDataStructured(): Returns “true” value since the “obtainData” method returned a
JSON representing a table.

3.1.1.5. REST Service Module Implementation

This module is based on REST Service which will provide data to the wrapper; therefore it is
required to have an installation of the database to use this module. The DSREST Service module
contains methods as described above.

getUniqueName(): this method has no argument but return a string “rest-datasource”
getDescription(): this method has no argument but returns a JSON object with
description of the module which could be in different languages.
getConfigurationDescription(): this method has no argument but returns the
configuration JSON required by the module in order to work correctly. For this module,
the JSON object contains parameters and its descriptions required to connect to the REST
service such as:

= endpoint

= method
= requestContentType
= querystring
= postData
= additionalHeaders
obtainData (JsonObject configuration) : this method has the returned configuration
object from the above method as an argument. It then uses the parameters provided by the
configuration object to connect to the REST Service and retrieves the selected fields. The
final return value for this method is JSON object in the format shown below but with the
corresponding values set.
{
dataFormat : ‘application/xml’,
data:'..
}
isDataStructured(): Returns “false” value since the “obtainData” method returned a
general output instead of JSON representing a table

3.1.1.6. TripleStore Module Implementation
This module is based on TripleStore which will provide data to the wrapper; therefore it is
required to have an installation of the database to use this module.

The DSTripleStore module contains methods as described above.

getUniqueName(): this method has no argument but return a string “triplestore-
datasource”
getDescription(): this method has no argument but returns a JSON object with
description of the module which could be in different languages.
getConfigurationDescription(): this method has no argument but returns the
configuration JSON required by the module in order to work correctly. For this module,
the JSON object contains parameters and its descriptions required to connect to the
TripleStore such as:

= endpoint

= sparqlQuery
obtainData (JsonObject configuration) : this method has the returned configuration
object from the above method as an argument. It then uses the parameters provided by the
configuration object to connect to the TripleStore and retrieves the selected fields. The
final return value for this method is JSON object in the format shown below but with the
corresponding values set.

{

columns : ['value', 'instantTime', ‘field3']
data: [

{

value : '...,
instantTime : "...",
field3 :".."

1Al

value : '...,
instantTime : "...",
field3 :".."

¥
]
}
e isDataStructured():Returns “true” value since the “obtainData” method returned a
JSON representing a table.

3.1.1.7. JsonFile Module Implementation

This module is based on JsonFile which will provide data to the wrapper; therefore it is required
to have an installation of the database to use this module. The DSJsonFile module contains
methods as described above.

e getUnigueName(): this method has no argument but return a string “json-datasource”

e getDescription(): this method has no argument but returns a JSON object with
description of the module which could be in different languages.

e getConfigurationDescription(): this method has no argument but returns the
configuration JSON required by the module in order to work correctly. For this module,
the JSON object contains parameters and its descriptions required to connect to the Json

file such as:
= path
= content

e obtainData (JsonObject configuration) : this method has the returned configuration
object from the above method as an argument. It then uses the parameters provided by the
configuration object to connect to the JsonFile and retrieves the selected fields. The final
return value for this method is JSON object in the format shown below but with the
corresponding values set.

{
dataFormat : 'application/xml’,
data:'..

¥

e isDataStructured(): Returns “true” value since the “obtainData” method returned a
JSON representing a table.

3.1.2. Detailed Description of DataSource Wrapper Class
In the implementation code of the DSWrapper class, initially a static moduleL.ist object is created
with its return type as List with the DSModulel interface as it argument as shown below:

= public static List<DSModulel> moduleList = new ArrayList<DSModulel>();

Subsequently, the DataSource modules created can be added to the above “moduleList” object as
shown below.

modulelList.add(new DSJsonFile());
modulelList.add(new DSExcel());
modulelList.add(new DSMSSQLServer());
modulelList.add(new DSMySQL());
modulelList.add(new DSRESTService());

| modulelist.add(new DSTripleStore()); |

DSWrapper contains two (2) main java methods namely the “getModules” and the
“callModule”. These methods perform some operation on the modules and return an output.

= getModules() : this method returns a JSON object containing the return values of all the
methods present in each of the modules added to the moduleList above.

= callModule(String moduleName, JsonObject moduleConfiguration) : this method
returns a JSON object and has the arguments of the name of the module and the module
configuration object. It checks if the module configuration JSON object has its key/value
pair set and subsequently get the actual data contained in the module specified.

3.1.3. Implementing the DataSource Wrapper as REST Web Service

The DataSource Wrapper is exposed through a web service with the “RESTService” class under
the “org.adoxx.dashboard.datasource.rest”. To explain how it works, the DataSource Wrapper
package is imported into the RESTService class in order to be able to call its methods. The
RESTService is annotated with the path “datasourceWrapper” to be added to the URI for
accessing the service. The web service provides two (2) relevant resources which are:

I. getModules() : this method gets all the modules from the DSWrapper and returns the
result as a string. It is annotated with a “GET” http request, a “/getModules” path and a
“Produces” annotation to set MediaType to JSON.

ii. executeModule() : this is POST method which takes the module name and the
configuration as its parameters and calls the DSWrapper method which returns the data
values from the specified module. The method is annotated with the path
“lexecuteModule” and it’s “Consumes” and “Produces” annotations are of media type
JSON.

3.2. The KPI Model

This is component is based on the ADOxx.org platform which allows for the definition of a
meta-model and the creation of an actual model to represent aspects of the KPI required by the
dashboard. In defining the meta-model, classes and their relations are created in the ADOXxx
development platform as well respective attributes created.

3.2.1. ADOxx Experimentation Library as a default library

In order to have a KPI modeling language, we need to create a meta-model on the ADOxx
development environment. Here an installation of the ADOxx platform on your computer is
required to get started.

(See this link for installation support: https://www.adoxx.org/live/download-15)

e Assuming installation is complete or you already have ADOxx existing on your
computer, open the development toolkit and go to “Library Management”, “Libraries”
then “Settings”.

4
(@;m Btas Window Help

W setngs. pansgement | MRE G5

B Checks..
.

Figure 3. 1 Library Management settings

e At Library Management, select the dynamic library under the Experimentation library.
Then click on the “Class Hierarchy” and add the meta-model view to see classes in detail.

3.2.2. Defining Classes and Attributes for the KPI modeling language

Now we define classes, attributes and relations for the KPI modeling language. Below are the
details of the classes and associated definitions. (See this link for creating classes and attributes
respectively: “https://www.adoxx.org/live/create_modelling_class” and
“https://www.adoxx.org/live/create_string_attribute™).

https://www.adoxx.org/live/download-15
https://www.adoxx.org/live/create_modelling_class
https://www.adoxx.org/live/create_string_attribute

Define classes and attributes below following the provided links:

GOAL
Description: STRING

\

1

ALGORITHM

Description: LONGSTRING
Code: LONGSTRING

DATASOURCE

! -
clepm:tls on implements
I -~
| -
1 P
1 .| i
. I ~
-
'\y #
KPI
1.*% 1
Description: LONGSTRING [has
fields: STRING

ds_type: STRING

ds_config: LONGSTRING

structured Output: ENUMERATION
userRequiredinputFieldList: STRING

Figure 3. 2 Class Diagram of KPI Meta-Model

A. Classes with Attributes:

1. Datasource
o ds_type (attribute type: STRING)

O O O

2. KP

@)
@)

fields (attribute type: STRING)
3. Goal

ds_config (attribute type: LONGSTRING)
structuredOutput (attribute type: ENUMERATION)
userRequiredInputFieldList (attribute type: STRING)

Description (attribute type: LONGSTRING)

o Description (attribute type: LONGSTRING)

4. Algorithm

o Description (attribute type: LONGSTRING)

o Code (attribute type: LONGSTRING)
(See also this link for creating relation classes below:
“https://www.adoxx.org/live/create_relation_class™)

B. Relations:

has_datasource (KPI-to-Datasource)
depend_on_kpi (KPI-to-KPI)
kpi_has_algorithm (KPI-to-Algorithm)
evaluated_with_kpi (Goal-to-KPI)
depend_on_goal (Goal-to-Goal)
goal_has_algorithm (Goal-to-Goal)

O O O O O O

https://www.adoxx.org/live/create_relation_class

3.2.3. Defining Graphical Representation for Classes and Notebook Attributes

We now create graphical representations for each of the classes and relation classes above. (See
this link: “https://www.adoxx.org/live/create_static_graphrep”). Give different graphical
representation for each of the classes and relation classes. For more details on example
graphReps go to: “https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-
Iwiki/GRAPHREP+Repository/FrontPage”.

For the classes and relation classes to visible we need to define “attrRep” attributes by add all the
attributes created above to the Notebook. (Check this link to see attributes defined in the
Notebook: “https://www.adoxx.org/live/define_attrrep_attribute™).

3.2.4. Creating a Modeltype

We create a modeltype in the “Library Attributes” and add all the classes to the modeltype. (See
link on creation of modeltype, “https://www.adoxx.org/live/create_modeltype™) in this case use
the name “KPI Model” and change the classes included to conform with the classes and relations
created above.

KPI Dynamic Library - Library attributes - Modi

MODELTYFE "KEPI model”™ from:none plural:"EPI models™ pos:4d not-simalateable
INCL "Datascurce™

INCL "KFI™

INCL "Goal™

INCL "Algorithm™

INCL "has_datascurce”
INCL "depend on_kpi™
INCL "goal_has_ algorithm™
INCL "kpi_has algorithm™
INCL "ewaluated with kpi™
INCL "depend on_goal”

Figure 3. 3 Creating a Modeltype and adding Library attributes

3.2.5. Creating a User to access the Modeling Toolkit

A user is required to be created in connection with the corresponding library in order to be able
to access the modeling toolkit. (See this link to create user:
“https://www.adoxx.org/live/create_user”).

3.2.6. ADOxx Modeling Toolkit Set up

Open the modeling toolkit and enter the user credentials created above (i.e. User name and
password) and click on “Model” at the top menu to create a new model (select the “KPI Model”
modeltype). All classes should be checked to confirm the attributes were defined correctly in the
Notebook.

A simple KP1 model can be created as seen below:

https://www.adoxx.org/live/create_static_graphrep
https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-/wiki/GRAPHREP+Repository/FrontPage
https://www.adoxx.org/live/adoxx-graphrep-repository-wiki/-/wiki/GRAPHREP+Repository/FrontPage
https://www.adoxx.org/live/define_attrrep_attribute
https://www.adoxx.org/live/create_modeltype
https://www.adoxx.org/live/create_user

Q Model Edit View Processtools ADOwm Training Days Extras Window Help
Flzene aBsSdoE| g e x unnE|He | ol B 21| #He s 2|
I TR p— Modelling (%]
EIERAEEICIDEE
= 123 Models
UQJ Business process diagram 7|r
@B KPI Model 1.0 e e -
@B kpi model 1.1 ﬁ = evaluated with
@L] KPI MODEL 2.0
@ depeids on
“““ has % ""'"'""'éaéiua;féaw"“'"""9ﬁ
dependsj;i
Srallated with
——— evaluated with
evaluated wiiﬁ
B
epends o Eoke ;
ettt as
< 2>
Navigato: [x]
deperds on
W
e s > 1 ':Ug'

Figure 3. 4 Example of a KPI Model showing objects and their relations

Note: graphical representation of the Classes and relations could be different

3.2.7. AdoScript to retrieve Notebook Attribute values of the instances on a KPI model

The AdoScript language which adds functionality to models in ADOXxx is used to retrieve all the
required attributes values from each of the instances or objects in the model. The aim of this is to
generate a JSON object in a format which required by the Web Dashboard service to work. The
JSON is interpreted by the Dashboard thereby allowing widgets on the Dashboard to get the right
values.

To bring this functionality to the model, a number of ADOxx Procedures (functions) are defined
and subsequently called to perform a function. The script file which allows for the JSON to be
generated can be accessed on the following github: “https://github.com/ADOxx-
org/KpiDashboard-MM/blob/master/src/scripts/KpiDashboardUtils.asc”.

Copy the script into a text editor (e.g. Notepad++) and save the name of the file as
“KpiDashboardUtils”. The script file contains two sets of “Procedures”, one is the set of
functions (“10 Procedures in all”) that retrieves all the needed attribute values of each object on
the KPI model and then transforms the output (into the Web Dashboard’s required JSON object)
and finally export the result. The second is the set of functions (“3 Procedures in all”’) which (it

https://github.com/ADOxx-org/KpiDashboard-MM/blob/master/src/scripts/KpiDashboardUtils.asc
https://github.com/ADOxx-org/KpiDashboard-MM/blob/master/src/scripts/KpiDashboardUtils.asc

helps the DataSource object to connect to the DataSource Wrapper component) will be discussed
later.

3.2.8. Configuring “KpiDashboardUtils” in the ADOxx development toolkit
To be able to use the above script, import the file into development toolkit file management on
the menu bar (i.e. “Extras” -> “File Management” under corresponding library).

Now go to the “Library Management”, select the required Library under the “Settings” tab and
click on “Library attributes” -> “Add ons” -> “External coupling”. Here we create a script to
execute the “KpiDashboardUtils” file when a button on the top menu bar is clicked.

Copy and Paste the script for execution below into the text area for the External coupling and
click “Apply” then restart the modeling toolkit to view the button “Generate Web Dashboard
Json” under the menu “EXxtras”:

R R R R R R R R B R R R R R R R R

ON_EVENT "Applnitialized"

{
EXECUTE file:("db:\\KpiDashboardUtils.asc")

}

ITEM "Generate Web Dashboard Json" acquisition:"Extras" modeling:"Extras" analysis:"Extras'
simulation:"Extras" evaluation:"Extras" importexport:"Extras"

EXPORT_KPI_MODEL_IN_JSON
T

3.2.9. The Dashboard Helper

This is a Java Maven project which aids the configuration of the DataSource and KPI objects in
the model. Its main function is to create a dialog boxes in order to set some parameters required
to connect to a particular data source or select fields the data provided by the data source in the
case of the KPI object.

There is a main class which executes each of the methods when the program is run. Available
source codes for the Dashboard Helper are provided here in the ADOxx Web Dashboard github
repository: “https://github.com/ADOxx-org/KpiDashboard-
MM/tree/master/src/additional_files/dashboard-helper_src”.

3.2.9.1. Methods in the Dashboard Helper

The Dashboard Helper contains a number of methods which is used to create JDialog boxes to
set parameters as mentioned earlier. All methods available to the helper read the final JSON
generated as a result of the different available modules of the data sources configured for the
dashboard. The content of this JSON is key/value pair of each of the required parameters for the

https://github.com/ADOxx-org/KpiDashboard-MM/tree/master/src/additional_files/dashboard-helper_src
https://github.com/ADOxx-org/KpiDashboard-MM/tree/master/src/additional_files/dashboard-helper_src

respective data sources present (i.e. key/value pair of parameters for Excel, MSSQLServer,
MySQL and other data source not discussed in this document). The methods for the helper are:

= chooseDatasourceType() : This method gets all the names and descriptions of the data
sources and presents it in a JDialog with the list of data source in a drop-down menu to be
selected by the user.

mysqgl-datasource ¥

Datasource for MySQL

| Ok H Cancel |

Figure 3. 5 Selecting a DataSource Type using the Dashboard Helper

= chooseDatasourceConfiguration() : this method retrieves the key “configuration” with
an object as its value for the any selected data source from the above method. It further
retrieves the all keys for the returned object which are the configuration parameters used
to connect to the particular data source. Then the dialog box to input the values into
parameters is called.

b Wsers\Blessed\Deskiop\Dashboard_all_pwdWD O Training Days - Participants Listxlsx |

Upload |

sheetNumber

Sheet Number

: |

password

Excel file password (OPTIONAL)

cellSeries

Comma separated list or rage of c ows that rep the set of cells where the series of data are described

‘1,04\ ‘

cellValues

Comma separated list or rage of © ows that rep the set of cells that contain the data of the series

‘2—14 ‘

Figure 3. 6 Setting Configuration parameters for the selected DataSource type

= chooseDatasourceUserInputs() : this method simply creates a JDialog box to allow any
user input values to set if there exist. The user can enter a “key” (for instance, a
password) and a “description” of the key. This is required for instance, if an excel sheet is
password-protected and it will subsequently be configured on the Web Dashboard to be
entered any time data from the excel sheet accessed.

X

Click "+" to add a new user input
Key : Description :

Figure 3. 7 Adding User Input

= chooseKPIFields() : this method is related to the KPI object in the KPI model and allows
fields from the provided data by the data source to be specified and retrieved.

Click "+" to add a new Kpi field

Participants |Measure Uni...|students

Manth Measure Uni...

Year Measure Uni..

Figure 3. 8 Adding KPI Fields to be retrieved

3.2.9.2. Configuring the Dashboard Helper with the KPI Model
Create additional attributes to the DataSource and KPI classes as shown in 3.2.2 above.
Attributes to add are:

Class Attribute Type

1. DataSource call_datasource_helper PROGRAMCALL

2. KPI call_dashboard_KPIFields PROGRAMCALL

a) In creating the attribute “call_datasource_helper” for the DataSource class, select Datasource
and create new attribute as shown below and click “Edit”.a

Attribute name:

| call_datasource_helper

Type:
| PROGRAMCALL (Program call)

Figure 3. 9 Create New attribute for DataSource class

b) Set up the “call_datasource_helper” attribute as shown below:

EnumerationDomain:

Attribute "callTEST"

Value range:

AttributeHelp T ext:

Edit value range

p .

P
< | Configure FieIdD 3) |

Parameters:
Default value:

File filter:

KPI_HELPER nObjectid: (objid)) %)

I Iy i e T e R e R g R R e

Figure 3. 10 Setting a program call to procedure to execute the Dashboard Helper jar

c) Add the new attribute to the attrRep Notebook setting it as a button as shown below:

Standard value:

NOTEBOOK
CHAPTER "Configuraticn™

ATTR "Name™

ATTE "ds_type"™

ATTR "ds_config”

ATTR "structursedfutput™

LIIE "IIEEEEESEII' redlomut el dlisin

ATTRE "call datascurce helper™ no-param push-button

Attribute type:

|LDNGSTRING {Long string)

Figure 3. 11 Adding the new attribute to the DataSource “attrRep”

d) In the modeling toolkit, the datasource object now has the attribute showing and executes the

dashboard_helper jar when clicked.

Mame:

| Excel sheet 2|

ds_type:

| excel-datasource

ds_config:

| {"sheetNumber":{"value""2"}," password":{"value"""},"cellSeries":{ "value":"1;C-A"}," cellValues":{ "value":"2-14"}, "fileP ath'|

structuredOutput

@ true
() false

userRequiredinputFieldList:

1

call_datasource_helper

| Configure

=]

Figure 3. 12 Button to execute Dashboard helper jar

> Repeat steps a) to ¢) above to create the second attribute “call_dashboard_KPIFields” for
the KPI class and set it up with the helper ADOxx procedure “KPI_HELPER” as depicted in

the diagram.

call_dashboard KPIFields - Edit facets

EnumerationDomain: 4
ITEM "Configure Fields™ Predefin

KPI_HELPER nCbjectId: (objid) —
Fac

Attribute "call_dashboard_KPIFields"

Value range:

Configure Fields

AttributeHelpText:

Edit value range

Programm call:

Configure Fields

Pararmeters:

Default walue:

File filter:

AdoScript:
KPI_HELPER nObjectld: {objid)

i i i i i i

Figure 3. 13 Creating KPI attribute and setting program call to execute Helper jar

» The “Configure Fields” button allows for the “Fields” attribute to be set by triggering the
Dashboard Helper.

MName:

Average yearly attendance Description

Description:

|s the average attendance over all years|

Fields:

| [{"narne":"Average","measurelnit":"students"}]

call_dashboard_KPIFields
| Configure Fields

Figure 3. 14 Button to configure KPI Fields with the Dashboard Helper

4. ADOxx Training Sessions Dashboard Example

Here, we try to explain how the dashboard can be set up and deployed using an example of an
excel datasource with a sample ADOxx Training session data in order to visualize the data on the
dashboard using a few widgets.

4.1. Prerequisite Tools and source codes
I. Eclipse IDE with a web application server installed (e.g. JBoss Tomcat web server)
ii. ADOxx Development and Modeling environments
iii. Github repository source codes for this example Dashboard implementation provided at:
“https://github.com/ADOxx-org/KpiDashboard-MM”

4.2. Setting Up The Training Session Web Dashboard

4.2.1. ADOxx Environment Implementations
On the ADOxx Development Platform:

1. Import KPI library into the ADOxx development environment —
(“Library Management” -> “Libraries” -> “Management” -> “Click Import” ->
“browse to library file location of the KPI Library”). Download library at:
“https://github.com/ADOxx-org/KpiDashboard-
MM/blob/master/KPIDashboardLibrary.abl”

P
a) Libraries | Migration Extras Window Help
W setinge panagement | B BE 5%
W% Checks...
Exit ADCaox Alt+F4

Figure 4. 1 ADOxx Library Management

https://github.com/ADOxx-org/KpiDashboard-MM
https://github.com/ADOxx-org/KpiDashboard-MM/blob/master/KPIDashboardLibrary.abl
https://github.com/ADOxx-org/KpiDashboard-MM/blob/master/KPIDashboardLibrary.abl

b) d ADOxx: Development Toolkit (Admin) - Administrator
Libraries Migration Bitras Window Help

B 0§ [nmgenat | 2R G

Library management

Monogement

Application libraries: '

Import...
(1 C1) ADOxx 13 Bar Display (Experimentation Enviranment)
(1 ADOxx 1.3 CookbookQuery Experimentation Library Export...
[ADOxx 15 Experimentation Library
[T BPMN2.0_ADOw13UL1_v1-01 Application Library Delete...
(1) CAxMAn_Business Modelling Application Library Digital Innovation v2.5

¢ (L KPI Library Rename...

SGML lbrary export...

File name:

’E ‘ | Browse... ‘

Figure 4. 2 KPI Dashboard Library Import

2. Create new user for the imported library —

(Go to “User Management” - > “User List” -> “Add” -> enter Username and password
-> Click “User group” -> Double click “ADO0xx” -> “OK”)

a ADOxx: Developmé
User Bdras Window Help

b) B e, B Do | BB |33
User management - User list = &
Registered ADOxx users: e
RAdmin ADOwc 1.5 Experimentation Library
BPMN BPMNZ0_ADOxI3ULT v1-01 Agplication Library Edi..
caxman CAxhAn_Business_Modelling Application Library_Digital_Innov|
o debug ADOyot 1.5 Experimentation Library Create copy
P kpi KPI Library
s QueryTest ADOxx 1.3 CookbookQuery Experimentation Library Rename...
training1 ADOsx 1.5 Experimentation Library
training? ADOsx 1.5 Experimentation Library Delete

PR eleted users..

a)

‘L;sev name: Add

| Close
|
Password: Help

ol \ | [componentaccss,

M User group list... Confirm password: Mol groups.

e \ \

|SSRE'Y |

& Import users... Application library:
3 b |ADOxc 15 Experi ion Library v Help
o3 Export users... 1
Authorisation
Bt ADOw AteFt [[] Development Toolkit

Sub-administration

Modelling Toolkit

Figure 4. 3 Creating a New User and associate with the corresponding Library

3. Import into the file management the AdoScript file “KPIDashboardUtils.asc” (i.e. script
to convert the KPI into a JSON representation required Web interface) —
(Go to “Extras” -> “File Management” -> “Import” -> browse to file location and
import)

a AL
b) User Bxtras Window Help
™ = |ﬂl|.?..““'.?‘.}
Database - File Management “
120 ADOxx 1.3 Bar Display (Experimentation Environment)
12 ADOxx 1.3 CookbookQuery Experimentation Library Export...
120 ADOxc 1.5 Experi ry
12 BPMIN2.0_ADOwc13UL1_v1-01 Agplication Library Rename...
a) 12 CAxMAn_Business_Modelling_Apelication Library Digital_nno
B KPI Library Move
dashboard-helperjar
KpiDashboardUtils.asc Copy
TrainingDayskPIModel.ad|
Delete...
[
U= Window Help Close
Q\ File management. CtrlAltsF | ‘ B @ | a Help
' Printer settings... Ctrl+Alt=P
F7
istics of database
< >

Figure 4. 4 File management for adding files to ADOxx database

4. Copy the following AdoScript code (which helps to execute script which contains procedures)
into the library attributes 'Add ons": -
(Go to “Library Management” -> “Settings” -> select the library -> click “Library attributes” -
> then click “Add-ons”)
T R R R R R R
ON_EVENT "Applnitialized"
{
EXECUTE file:("db:\\KpiDashboardUtils.asc")
}
ITEM "Generate Web Dashboard Json" acquisition:"Extras" modeling:"Extras" analysis:"Extras"
simulation:"Extras" evaluation:"Extras" importexport:"Extras"
EXPORT_KPI_MODEL_IN_JSON
T T

KPl Dynamic Library - Library attributes

% Modi: O
=~ |MODELTYPE "KFI model™ from:none plural:"KPI models”™ pos:4 not-simulateable ~ Description
== |INCL "Datasocurce™ Add
== |INCL "KPI™ -ons
T3 |INCL "Goal” Modelling
== |INCL "algorithm”
= I
ON_EVENT "RppInitialized”

{

}

EXECUTE file: ("db:\\KpiDashboardUtils.asc"™)

Apply

ITEM "RAdoScript Debug Shell™

acquisition:"Extras™ modeling:"™Extras™

analy3is:"Extrasa’l

i

Find...

gimalation: "EXtri

code™
IF (endbutton =

as"

CC "RdoScript™ EDITBOX text: ("") fontname:"Courier New"™
cktext: "Run™

TekTy

evaluation: "Extras”

importexport: "Extras™

fontheight:12 title:"Debug

Find next

Cancel

EXECUTE (text)
1

Help
ITEM "Generate Web Dashboard Json™ acquisition:"Extras™ modeling:"Extras™

analysis:"Extras"™ simalation:"Extras™ evaluation:"Extras" importexport:"Extras™
EXPORT_KPI_MODEL_IN_JSoN|

567 characters | Ln 14 Col 25

Figure 4. 5 ADOxx External coupling to execute AdoScript file
On the ADOxx Modeling Toolkit:

5. Open the modeling environment the new user credentials

6. Import the “TrainingDaysKPIModel.adl” file provided (this contains a predefined KPI
model) — (Go to “Import/Export” -> “Model” -> “ADL Import” -> “Models/Attribute
profile”)

ADOxox Modelling Toolkit (kpi) -
pw Help

Be ool | @

Q) el [0

File selection ‘Mudel options | Log file ‘

Import file:

ed\Desktop'Dashboard_all_pwd\TrainingDaysKPIModel.ad|

Import ebjects from other library

[o || camcer | Hep

| [
Figure 4. 6 KPI Model Import

4.2.1.1. ADOxx Training Session KP1 Model
The “TrainingDays-KPI1” model comprises of two distinct KPI models on one modeling area.

Below are the screenshots of the models:

e 2 Goals, 3 KPI, 1 Datasource and 4 Algorithm objects for excel sheet 2

oo onmE | HE|Qss B L] HkEk |2

ﬁ
4
=l
@
A

Chedk |85t session attendance

‘Cumrent min atendance reached

B>

.: Evaluaterjw)

Min attendance reached Chedk attendance on all sessicns

dependilad /
Fenaratsd By : AT =

—
Fequit Min stiendance reached for 2018 Check 2018 sttendance

Falusisd oy
=) T)

fwerage yeardy atendance Caloulste aversge

“LH -
e
requis

Yearly sttendance depends on

Group by year
e RN it >
requir

Figure 4. 7 KP1 Model for the second Excel sheet available in the DataSource

>

>

genersted by

e 1 Goals, 2 KPI, 1 Datasource and 3 Algorithm objects for Excel sheet 1

4
/
= evaluated by

Training understandability reached Check percentage

depends [t;n

- S— i enerated
neratedﬁ : g by

require : .
a H Calculate repeating students

aepends 3n
&valuated : generated by -

Calculate institution attendances

L E ,,,,,,,,,,,,,,,,,, .
Mum students attended more then one session Institution with more attendances Excel sheet 1

connect to

[ADOxc Developrment Toolkit (Admin) - Administrator b

Figure 4. 8 KP1 Model for the first Excel sheet available in the DataSource

4.3. Description of objects and relevant attribute values of the Training Session KPI model

The KPI model evaluates some data from the participants of the training usually organized by the
ADOxx.org team. The data is Excel sheet provided by the DataSource wrapper with information

about number of participants per training in a particular year and details of each participant.

In the first part the model consists of 2 Goals, 3 KPI, 1 Datasource and 4 Algorithm objects
which have Notebook attributes of the classes.

Let’s now review the attributes set for each one of the instances of the classes.

a) DataSource “Excel sheet 2”

Double click on the object representation

Excel shéet 2

Figure 4. 9 DataSource object configured to select sheet 2 of the Excel data

iv.

Click on “Configure Fields” to call the java helper class which allows the attribute
values to be set

call_datasource_helper

l Cenfigure l

Figure 4. 10 Trigger the Dashboard Helper to configure DataSource object

“Dashboard REST Endpoint” is set with “ http://127.0.0.1:8080/dashboard/rest” ->
Click “Ok”

Dashboard REST Endpoint:

[iottp://127.0.0.1:8080/dashboard/rest]

| oK H Cancel H Help }

Figure 4. 11 Setting Dashboard REST Endpoint

Select “excel-datasource” -> Click “Ok”

lexcel-datasource v

Get data from an Excel sheet

| Ok || Cancel |

Figure 4. 12 Selecting a DataSource type

http://127.0.0.1:8080/dashboard/rest

v. Configuration parameters to connect and extract data from excel sheet are set as
shown below -> Click “Ok”

filePath
Uri/Path of the Excel file

b:\Users\EIessemDesktoplDashboard_all_pwd\ADD}a(Training Days - Participants Listxlsx

Upload

sheethumber

Sheet Number

2

password

Excel file password (OPTIONAL)

cellSeries

Comma separated list or rage of columnsi/rows that represent the set of cells where the series of data are described

1,C-A

cellValues

Comma separated list or rage of columnsi/rows that represent the set of cells that contain the data of the series

214

Figure 4. 13 Configurations Parameters required for connecting and retrieving data

vi. User Inputs (OPTIONAL); for example, excel password or user email, etc. -> Click
“Ok” to finish

Click "+" to add a new user input

Figure 4. 14 Setting User Inputs (OPTIONAL)

Note: Datasource attributes will be set as shown below:

ADOxx Modelling Toolkit (kpi) - [TrainingDays-KPI (KPI model)]

structured Output
(®) true

userRequiredinputFieldList:

call_datasource_helper

Figure 4. 15 DataSource object with Excel sheet configuration parameters

b) The 3 KPI Objects must be configured as shown below (from bottom up)
KPI 1 (Single session attendance)

Double Click on the KPI object to view attributes with
preset entries

Figure 4. 16 Single Session Attendance KPI

This KPI connects to the excel sheet and gets the required fields specified in
the “Fields” attribute by clicking the “ Configure Fields” button with aid of a
java helper class.

This KPI provides information on the number of participants for each ADOxx
Training session.

Single session attendance (KPI) -

Name:
Single session attendance ‘

Description: O
Number of participants for each Training session :

Fields:
i, [{"name":"Participants”,"measureUnit":"students"},{"name":"Month", "measureUnit":""},{"name":"Year", "measureUnit":"' }

call_dashboard_KPIFields

‘ Configure Fields
L

Click "+" to add a new kpi field
Participants |Measure Uni...students

Month ’Measure Uni...

Year Measure Uni...

i1t

Close J Reset
Figure 4. 17 Configuring Single Session Attendance KPI

KPI 2 (Yearly attendance)

Yearly attendance

Figure 4. 18 Yearly Attendance KPI

helper class.

This KPI is generated by the Algorithm “Group by year” and gets the required fields
specified in the “Fields” attribute by clicking the “Configure Fields” button with the

This KPI provides information on the number of participants for a particular year.

Yearly attendance (KPI)

Name:

[Yearly attendance

Description:

Number of participants per Year

Fields:

[[{"name":"Participants”,"measureUnit":"students"},{"name":"Year","measureUnit":""}]

call_dashboard_KPIFields

‘ Configure Fields
& Kpi Fields
Click "+" to add a new kpi field
Name : Participants |Measure Uni...|students

Name : Year Measure Uni...

{1t 1

Close | Reset

Figure 4. 19 Configuring Yearly Attendance KPI

KPI 3 (Average yearly attendance)

Note: Repeat steps 1), 2), and 3) of “KPI1” above to
set up this KPI object with values as shown in the

% o]

fields below

=

Average yearly attendance

Figure 4. 20 Average Yearly Attendance KPI

This KPI is generated by the Algorithm “Group by year” and gets the required fields
specified in the “Fields” attribute by clicking the “Configure Fields” button with the
helper class.

This KPI provides information on the number of participants for a particular year.

Average yearly attendance (KPI) =IE

=4

} Average yearly attendance | Description

Name:

Description: O
Is the average attendance over all years ’

Fields:

‘ [{"name":"Average","'measureUnit":"students"}] ‘

call_dashboard_KPIFields

‘ Configure Fields ‘

(& Kpi Fields

Click "+" to add a new kpi field

Name : Average Measure Uni...|students

i i 1 g

Figure 4. 21 Configuring Average Yearly Attendance KPI

c) The 5 Algorithm objects configuration is described as follows:
Algorithm 1 (Group by year)

This algorithm reads the number of participants per
single session and groups them according to the years.

The fields consist of the description and a JavaScript
code to perform the grouping and provide the result to

the connected KPI.

Group by yvear
Figure 4. 22 Group by Year Algorithm

Group by year (Algorithm) i A=)
[
Name:) ’ I =3
| Group. by year | Description
Description: D_

Read the number of participants per single session and group them per year

Code: O
i var numParticipantSingleSessionValue = requiredKpiValueList[0].value; A
varret = {
columns : ["Participants”, "Year"],
data:[]
I v

Ut AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Close ‘ Reset

Figure 4. 23 Configuration of Group by Year Algorithm

Algorithm 2 (Calculate average)

Calculate average

This algorithm calculates the average attendance over all the
years.

The fields consist of the description and a JavaScript code to
perform the grouping and provide the result to the
connected KPI.

Figure 4. 24 Calculate Average Algorithm

Calculate average (Algorithm) =

Name:
| Calculate average

Description:

i ==

| Description

Code:

var ret = {
columns : ["Average"],
data: []

%

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

1|
W

Uil

| Calculate the average attendance over all the years

var numParticipantYearlyValue = requiredKpiValuelist[0].value;

[Close \ Reset

)‘D |

[<

Figure 4. 25 Configuring Calculate Average Algorithm

Note:

The rest of the 3 Algorithms follows the above set ups and can be viewed by double-clicking the

object on the model.

d) There are 3 Goals to be evaluated in the upper KPI model which required only a goal
description to be set usually in a question form.

Min attendance reached for 2018 Min attendance reached Current min attendance reached

Figure 4. 26 Goals to be evaluated

e) The second part of the KPI model consists of 1 Goal, 2 KPI, 3 Algorithms and 1 Excel Data
source as depicted in the diagram below.
In this scenario, the Excel is assumed to be password protected therefore the
“userRequiredInputFieldList” value is set with a password variable.

evaluated by

Check percentage

Calculate institution attendances

connect to

Figure 4. 27 KP1 Model for Excel sheet 1

f) Now the required JSON file to be provided to the Web Dashboard can be generated and
exported. Do this by:
» Click “Extras” on the menu bar 2 Click “Generate Web Dashboard JSON”

tools | Extras Window Help

4 User settings.. P Edad|ee s anmns | FHA| @ BD| 41| Hk e s |

Change password...

User status...

BBy Current configuration...

=7 Messages

AdoScript Debug Shell
Generate Web Dashboard Json
‘ B }

Current min attendance reached Check last session attendance

‘connect ti / =
~ evaluated by
depends %

Min attendance reached Check attendance on all sessions

Faluated By : o R A

Figure 4. 28 Triggering the AdoScript to Generate the model JSON

» Select the model to be exported - Browse to a location to save exported file

M@J_

.m&l*ulxowmme%]z%

S

Select the Modeis toexport - O

n attendance reached [Models ‘

Models:

£ 3 Models
B TrainingDays-KPI

Savein: ‘ | Dashboard_all_pwd V‘ Q02 Er
oot ‘ & Name ’ Date modified Type
Min attendanc, »"} (& modelExport 6/13/20172:36 AM JSONFile ||8 attendance

depends % Recent places
dEnerated By -
W Desktop
Sepends o li=i

....... Libraries
Halisted By

]
&\ e average

Computer

File name: “ v ‘ | Save
|

Save as type: ‘ json format L4 i

require

Export file:

_ require m AAAAAAAAAAAAAAAAAAAAA connec[[g AAAAAAAAAAAAAA .
Figure 4. 29 Exporting the generated model JSON

4.2.2. Importing the Dashboard war into Eclipse IDE

1.

a)

2.

Import of the Dashboard war file and create new Dashboard project in eclipse.

» Go to “File” -> Click “Import” -> Locate and select “war file” in the wizard

> Browse and Select the Web dashboard war file.

» Give the project a name, select a runtime environment and click “Finish”

= Import = = = x
Select \‘ WAR Import =
Import an external WAR file into a Web Project H b) €3 WAR file file name must be entered, |\ o
T
Select an import wizard: WAR file: ¥ | | Browse...
type filter text Web project: v
& (= Maven A
» = Oomph Target runtime: | JBoss 7.1 Runtime ¥ | New..
> = PHP EAR membership
» (= Plug-in Development [] Add project to an EAR
Run/Debt
» & Run/Debug EAR project name: | DeepThoughtWSEAR New Project..
& Tasks
b = Team

i (= Test Import Category
» [Test Import Duplicate Category
4 (= Web
[, WAR file
[(= Web services
b= XML
I (= Other

@ < Back Next > e Cancel @ < Back Ned > Finish

Cancel

Figure 4. 30 Eclipse IDE import of the Dashboard war file

Install an Application Server (if not present) and deploy the project on the server

& Tomcat v9.0 Server at localhost 52

B Overview

General Information » Publishing
Specify the host name and other common settings.
» Timeouts
Server name: Tomcat v9.0 Server at localhost
Host name: localhost ~ Ports
T 7 Modify the server perts.
Runtime Environment: | Apache Tomcat v9.0 v
Configuration path: /Servers/Tomcat v9.0 Server at localhost-config | | Browse... | tortHame Forz Nimbes
» ; & Tomcat admin port 8004
Lpen launch conhiguration 2
Open launch configuration &5 HTTP/1.1 2080
S e Ap13 8008
¥ Server Locations
Specify the server path (i.e. catalina.base) and deploy path. Server must be published with
no modules present to make changes.
® Use workspace metadata (does not modify Tomcat installation)
» MIME Mappings

Use Tomcat installation (takes control of Tomcat installation)

Use custom location (does not modify Tomcat installation)

Serverpath: | .metadata\.plugins\org.eclipse.wst.server.core\tmp0 Browse.

Overview| Modules|

(2] Markers [T] Properties | i) Servers 52 | [i3 Snippets 3/ Problems [Console [TCP/IP Monitor) Process Instance 4§ Remote Systems
b €8 JBoss AS7.1 [Stopped]
s | a Tomcat v9.0 Server at localhost [Started, Synchronized][
(% dashboard [Synchronized]
[X] XML Configuration
|5 Filesets
> B8 WildFly 8x [Stopped]

Figure 4. 31 Deploying Dashboard project on Tomcat Application

4.1.3. Configuration and Visualization of the KPI model Result
I. Web Dashboard JSON model import and visualize KPI widgets
1. With the dashboard project deployed on the Tomcat application server as shown above,
enter the url : “http://127.0.0.1:8080/dashboard/dashboard.html#” in your web browser to

view the home page.

@ Dashboard

Figure 4. 32 Web Dashboard User interface
2. Click the highlighted button at the top right corner to locate and import KPI model export
file

Dashboard Status: ¢/ & 2 B M

=]

b)
KPI Model Status: ¢®

Auto-update interval (in minutes): |5

a)

Figure 4. 33 Uploading model Export file on to the Dashboard to visualize KPIs

3. There 3 widgets are provided as shown below. Select any widget to configure and
visualize the KPI information as given by the model.

:

| Widgets:
Filter

i= Table Chart
Y Tree Overview
28 Table Qverview

Figure 4. 34 Dashboard widgets

http://127.0.0.1:8080/dashboard/dashboard.html

High-level visualization of the dashboard for monitoring and comprehend the data provided
below:

@ Dasnhboard o
slelsla z]sla] m
Total models Total KPls Total Geals Succeeded Goals Failed Goals Unevaluable Goals Number of participants per Year
Participants Year
1 5 4 20 1@ 1@ 10 students 2017
30 students 2016
X 18 students 2015 .
AR AN |
v mMODELs o
© Min attendance reached Single session attendance @ Current min attendance reached
+ il TrainingDays-KPI
L 10 students L
¥ @GOALs
~ @Min attendance reached
@© Training understandability reached @ Num students attended more then one session
E Single session attendance
® 9 students

~ @ Current min attendance reached

= Single session attendance

@ Min attendance reached for 2018 [¢] Yearly attendance (0] Average yearly attendance

& @Training understandability reached

= Num students attended more then one session . 10 students 17.6 students

~ @Min attendance reached for 2018
- @ Institution with more attendances
¥ = Yearly attendance

= Single session attendance

Universitat Wien

Figure 4. 35 Dashboard Overview of the ADOxx Training Sessions Data

5. Conclusions and Plans for Future Work

This document has provided a detailed description and documentation of the development of the
KP1 Web Dashboard for monitoring the achievement or otherwise of specific KPIs and goals
defined by businesses or organizations. This KPI Dashboard ensures that organizations make
well-informed, faster and accurate decisions.

The initial prototype described in this document is limited in scope because it does not explain
any detail implementation of how the Dashboard web interface was developed and as well more
widgets such as line graph, tachometers, bar charts, etc. can be added to visualize complex data.
This can be done by to improve upon this deliverable in order help better understand how the
web interface of the Dashboard was developed and as well widen the scope of visualization.

Also, improvement of the DataSource Wrapper by implementation some advanced data sources
such as Oracle, NoSQL databases and other cloud-provided databases can be done also with the
aim of widening the scope.

References
[1] ADOxx documentation, available at: https://www.adoxx.org/live/adoxx-documentation

[2] Learn PAd Project Team. D6.2: Learn PAd Simulation Environment: Refined
Architecture and Prototype Implementation

